Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 118: 104011, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37536834

RESUMO

In knowledge-based treatment planning (KBTP) for intensity-modulated radiation therapy (IMRT), the quality of the plan is dependent on the sophistication of the predicted dosimetric information and its application. In this paper, we propose a KBTP method that based on the effective and reasonable utilization of a three-dimensional (3D) dose prediction on planning optimization. We used an organs-at-risk (OARs) dose distribution prediction model to create a voxel-based dose sequence based optimization objective for OARs doses. This objective was used to reformulate a traditional fluence map optimization model, which involves a tolerable spatial re-assignment of the predicted dose distribution to the OAR voxels based on their current doses' positions at a sorted dose sequencing. The feasibility of this method was evaluated with ten gynecology (GYN) cancer IMRT cases by comparing its generated plan quality with the original clinical plan. Results showed feasible plan by proposed method, with comparable planning target volume (PTV) dose coverage and greater dose sparing of the OARs. Among ten GYN cases, the average V30 and V45 of rectum were decreased by 4%±4% (p = 0.02) and 4%±3% (p<0.01), respectively. V30 and V45 of bladder were decreased by 8%±2% (p<0.01) and 3%±2% (p<0.01), respectively. Our predicted dose sequence-based planning optimization method for GYN IMRT offered a flexible use of predicted 3D doses while ensuring the output plan consistency.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radiometria
2.
Oral Oncol ; 104: 104625, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151995

RESUMO

OBJECTIVES: To investigate whether dosiomics can benefit to IMRT treated patient's locoregional recurrences (LR) prediction through a comparative study on prediction performance inspection between radiomics methods and that integrating dosiomics in head and neck cancer cases. MATERIALS AND METHODS: A cohort of 237 patients with head and neck cancer from four different institutions was obtained from The Cancer Imaging Archive and utilized to train and validate the radiomics-only prognostic model and integrate the dosiomics prognostic model. For radiomics, the radiomics features were initially extracted from images, including CTs and PETs, and selected on the basis of their concordance index (CI) values, then condensed via principle component analysis. Lastly, multivariate Cox proportional hazards regression models were constructed with class-imbalance adjustment as the LR prediction models by inputting those condensed features. For dosiomics integration model establishment, the initial features were similar, but with additional 3-dimensional dose distribution from radiation treatment plans. The CI and the Kaplan-Meier curves with log-rank analysis were used to assess and compare these models. RESULTS: Observed from the independent validation dataset, the CI of the model for dosiomics integration (0.66) was significantly different from that for radiomics (0.59) (Wilcoxon test, p=5.9×10-31). The integrated model successfully classified the patients into high- and low-risk groups (log-rank test, p=2.5×10-02), whereas the radiomics model was not able to provide such classification (log-rank test, p=0.37). CONCLUSION: Dosiomics can benefit in predicting the LR in IMRT-treated patients and should not be neglected for related investigations.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia de Intensidade Modulada/métodos , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Recidiva Local de Neoplasia , Prognóstico , Análise de Sobrevida
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(6): 683-690, 2018 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-29997090

RESUMO

OBJECTIVE: To establish the association between the geometric anatomical characteristics of the patients and the corresponding three-dimensional (3D) dose distribution of radiotherapy plan via feed-forward back-propagation neural network for clinical prediction of the plan dosimetric features. METHODS: A total of 25 fixed 13-field clinical prostate cancer intensity-modulated radiation therapy (IMRT)/stereotactic body radiation therapy (SBRT) plans were collected with a prescribed dose of 50 Gy. With the distance from each voxel to the planned target volume (PTV) boundary, the distance from each voxel to each organ-at-risk (OAR), and the volume of PTV as the geometric anatomical characteristics of the patients, the voxel deposition dose was used as the plan dosimetric feature. A neural network was used to construct the correlation model between the selected input features and output dose distribution, and the model was trained with 20 randomly selected cases and verified in 5 cases. RESULTS: The constructed model showed a small model training error, small dose differences among the verification samples, and produced accurate prediction results. In the model training, the point-to-point mean dose difference (hereinafter dose difference) of the 3D dose distribution was no greater than 0.0919∓3.6726 Gy, and the average of the relative volume values corresponding to the fixed dose sequence in the DVH (hereinafter DVH difference) did not exceed 1.7%. The dose differences among the 5 samples for validation was 0.1634∓10.5246 Gy with percent dose differences within 2.5% and DVH differences within 3%. The 3D dose distribution showed that the dose difference was small with reasonable predicted dose distribution. This model showed better performances for dose distribution prediction for bladder and rectum than for the femoral heads. CONCLUSION: We established the relationships between the geometric anatomical characteristics of the patients and the corresponding planning 3D dose distribution via feed-forward back-propagation neural network in patients receiving IMRT/SBRT for the same tumor site. The proposed model provides individualized quality standards for automatic plan quality control.


Assuntos
Redes Neurais de Computação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...