Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 38(8): 747-763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36224109

RESUMO

Biofouling is a problem affecting the operation of nanofiltration systems due to the complexity of the carbon matrix affecting bacteria and biofilm growth. This study used membrane fouling simulators to investigate the effects of five different carbon sources on the biofouling of nanofiltration membranes. For all the carbon sources analyzed, the increase in pressure drop was most accelerated for acetate. The use of acetate as the single carbon source produced less adenosine triphosphate but more extracellular polymers than glucose. The microbial community was analyzed using 16 s rRNA. The use of more than a single carbon source produced an increase in bacteria diversity even at similar concentrations. The relative abundance of proteobacteria was the highest at the phylum level (95%) when a single carbon source was added. Additionally, it was found that the use of different carbon sources produced a shift in the microbial community, affecting the biofouling and pressure drop on membranes.


Assuntos
Incrustação Biológica , Microbiota , Purificação da Água , Carbono , Membranas Artificiais , Biofilmes , Bactérias/genética , Acetatos
2.
Arthritis Res Ther ; 22(1): 270, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198793

RESUMO

Intervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis, aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in different ways. MiRNAs downregulate target genes' expression by directly binding to the 3'-untranslated region of mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and form complex regulatory networks in the degenerative processes. The current review presents novel insights into the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , RNA Longo não Codificante , Humanos , Degeneração do Disco Intervertebral/genética , MicroRNAs/genética , RNA Circular , RNA Longo não Codificante/genética
3.
BMC Genomics ; 20(1): 1032, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888472

RESUMO

BACKGROUND: MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. RESULTS: 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. CONCLUSIONS: This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.


Assuntos
Genes myc , Genoma de Planta , Genômica , Família Multigênica , Triticum/genética , Alelos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Triticum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...