Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 98: 105836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702034

RESUMO

Nanoparticles have unique properties that make them useful in biomedicine. However, their extensive use raises concerns about potential hazards to the body. Therefore, it is crucial to establish effective and robust toxicology models to evaluate the developmental and functional toxicity of nanoparticles on the body. This article discusses the use of stem cells to study the developmental and functional toxicity of organs of endodermal origin due to nanoparticles. The study discovered that various types of nanoparticles have varying effects on stem cells. The application of stem cell models can provide a possibility for studying the effects of nanoparticles on organ development and function, as they can more accurately reflect the toxic mechanisms of different types of nanoparticles. However, stem cell toxicology systems currently cannot fully reflect the effects of nanoparticles on entire organs. Therefore, the establishment of organoid models and other advanced assessment models is expected to address this issue.


Assuntos
Endoderma , Nanopartículas , Células-Tronco , Animais , Nanopartículas/toxicidade , Humanos , Células-Tronco/efeitos dos fármacos , Endoderma/efeitos dos fármacos , Endoderma/citologia
2.
Mol Med Rep ; 28(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37449500

RESUMO

Erectile dysfunction (ED) is a prevalent disease that causes sexual dysfunction in males. Inflammation­induced endothelial dysfunction is a fundamental pathophysiological symptom of ED, which is impacted by cell death. Pyroptosis is a type of programmed cell death mediated by the inflammasome that was discovered in inflammatory disorders. The activation of nucleotide­binding oligomerization domain­like receptors, particularly downstream inflammatory factors, such as IL­1ß and IL­18, is indicative of caspase­dependent pyroptosis. Although the underlying mechanisms of pyroptosis have been investigated in several disorders, the role of pyroptosis in ED remains to be fully elucidated. At present, studies on pyroptosis have focused on improving the understanding of ED pathogenesis and promoting the development of novel therapeutic options. The present review article aimed to discuss the literature surrounding the mechanisms underlying pyroptosis, and summarize the role of pyroptosis in the development and progression of inflammation­mediated ED.


Assuntos
Disfunção Erétil , Piroptose , Masculino , Humanos , Piroptose/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Disfunção Erétil/etiologia , Inflamassomos/metabolismo , Inflamação/patologia
3.
Sci Total Environ ; 634: 141-149, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627536

RESUMO

A series of Mo2N/HZSM-5 and transition metal modified Mo2N/HZSM-5 catalysts were prepared for the catalytic upgrading of pine wood-derived pyrolytic vapors for the selective production of monocyclic aromatic hydrocarbons (MAHs), while restraining the formation of polycyclic aromatic hydrocarbons (PAHs). Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were performed to determine the effects of several factors on selective MAHs production, including Mo2N loading on HZSM-5, transition metal (Fe, Ce, La, Cu, Cr) modification of Mo2N/HZSM-5, pyrolysis temperature, and catalyst-to-biomass ratio. In addition, quantitative experiments were conducted to determine the actual yields of major aromatic hydrocarbons and the source of aromatic hydrocarbons from basic biomass components. Results indicated that among the various catalysts, the Ce-10%Mo2N/HZSM-5 exhibited the best performance on promoting the formation of MAHs and restraining the generation of PAHs. Under the optimal conditions, the actual yields of MAHs and PAHs from Ce-10%Mo2N/HZSM-5 catalytic process were 99.8mg/g and 7.5mg/g, while those from HZSM catalyst were only 77.2mg/g and 23.7mg/g respectively. Furthermore, the possible catalytic mechanism of the Ce-Mo2N/HZSM-5 catalyst was proposed based on the catalyst characterization.

4.
Front Chem ; 6: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515994

RESUMO

A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...