Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137026

RESUMO

The contamination of agricultural soil with cadmium (Cd), a heavy metal, poses a significant environmental challenge, affecting crop growth, development, and human health. Previous studies have established the pivotal role of the ZmHMA3 gene, a P-type ATPase heavy metal transporter, in determining variable Cd accumulation in maize grains among 513 inbred lines. To decipher the molecular mechanism underlying mutation-induced phenotypic differences mediated by ZmHMA3, we conducted a quantitative tandem mass tag (TMT)-based proteomic analysis of immature maize kernels. This analysis aimed to identify differentially expressed proteins (DEPs) in wild-type B73 and ZmHMA3 null mutant under Cd stress. The findings demonstrated that ZmHMA3 accumulated higher levels of Cd compared to B73 when exposed to varying Cd concentrations in the soil. In comparison to soil with a low Cd concentration, B73 and ZmHMA3 exhibited 75 and 142 DEPs, respectively, with 24 common DEPs shared between them. ZmHMA3 showed a higher induction of upregulated genes related to Cd stress than B73. Amino sugar and nucleotide sugar metabolism was specifically enriched in B73, while phenylpropanoid biosynthesis, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism appeared to play a more significant role in ZmHMA3. This study provides proteomics insights into unraveling the molecular mechanism underlying the differences in Cd accumulation in maize kernels.


Assuntos
Cádmio , Zea mays , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Proteômica , Estruturas Vegetais , Solo
2.
BMC Microbiol ; 22(1): 57, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168566

RESUMO

BACKGROUND: Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS: Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS: Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.


Assuntos
Bactérias/genética , Cádmio/análise , Poluição Ambiental , Glycine max/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Cádmio/metabolismo , China , Produtos Agrícolas/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química , Glycine max/microbiologia , Zea mays/microbiologia
3.
J Exp Bot ; 72(18): 6230-6246, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34235535

RESUMO

Cadmium (Cd) accumulation in maize grains is detrimental to human health. Developing maize varieties with low Cd content is important for safe consumption of maize grains. However, the key genes controlling maize grain Cd accumulation have not been cloned. Here, we identified one major locus for maize grain Cd accumulation (qCd1) using a genome-wide association study (GWAS) and bulked segregant RNA-seq analysis with a biparental segregating population of Jing724 (low-Cd line) and Mo17 (high-Cd line). The candidate gene ZmHMA3 was identified by fine mapping and encodes a tonoplast-localized heavy metal P-type ATPase transporter. An ethyl methane sulfonate mutant analysis and an allelism test confirmed that ZmHMA3 influences maize grain Cd accumulation. A transposon in intron 1 of ZmHMA3 is responsible for the abnormal amino acid sequence in Mo17. Based on the natural sequence variations in the ZmHMA3 gene of diverse maize lines, four PCR-based molecular markers were developed, and these were successfully used to distinguish five haplotypes with different grain Cd contents in the GWAS panel and to predict grain Cd contents of widely used maize inbred lines and hybrids. These molecular markers can be used to breed elite maize varieties with low grain Cd contents.


Assuntos
ATPases do Tipo-P , Poluentes do Solo , Cádmio/metabolismo , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Zea mays/genética , Zea mays/metabolismo
4.
BMC Genet ; 17: 58, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27072350

RESUMO

BACKGROUND: Hybrid breakdown has been well documented in various species. Relationships between genomic heterozygosity and traits-fitness have been extensively explored especially in the natural populations. But correlations between genomic heterozygosity and vegetative and reproductive traits in cotton interspecific populations have not been studied. In the current study, two reciprocal F2 populations were developed using Gossypium hirsutum cv. Emian 22 and G. barbadense acc. 3-79 as parents to study hybrid breakdown in cotton. A total of 125 simple sequence repeat (SSR) markers were used to genotype the two F2 interspecific populations. RESULTS: To guarantee mutual independence among the genotyped markers, the 125 SSR markers were checked by the linkage disequilibrium analysis. To our knowledge, this is a novel approach to evaluate the individual genomic heterozygosity. After marker checking, 83 common loci were used to assess the extent of genomic heterozygosity. Hybrid breakdown was found extensively in the two interspecific F2 populations particularly on the reproductive traits because of the infertility and the bare seeds. And then, the relationships between the genomic heterozygosity and the vegetative reproductive traits were investigated. The only relationships between hybrid breakdown and heterozygosity were observed in the (Emian22 × 3-79) F2 population for seed index (SI) and boll number per plant (BN). The maternal cytoplasmic environment may have a significant effect on genomic heterozygosity and on correlations between heterozygosity and reproductive traits. CONCLUSIONS: A novel approach was used to evaluate genomic heterozygosity in cotton; and hybrid breakdown was observed in reproductive traits in cotton. These findings may offer new insight into hybrid breakdown in allotetraploid cotton interspecific hybrids, and may be useful for the development of interspecific hybrids for cotton genetic improvement.


Assuntos
Genoma de Planta , Gossypium/genética , Heterozigoto , Cromossomos de Plantas/genética , Genômica , Técnicas de Genotipagem , Desequilíbrio de Ligação , Repetições de Microssatélites , Fenótipo , Locos de Características Quantitativas
5.
Front Plant Sci ; 7: 2037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149299

RESUMO

Segregation distortion is commonly detected via genetic mapping and this phenomenon has been reported in many species. However, the genetic causes of the segregation distortion regions in a majority of species are still unclear. To genetically dissect the SD on chromosome 18 in cotton, eight reciprocal backcross populations and two F2 populations were developed. Eleven segregation distortion loci (SDL) were detected in these ten populations. Comparative analyses among populations revealed that SDL18.1 and SDL18.9 were consistent with male gametic competition; whereas SDL18.4 and SDL18.11 reflected female gametic selection. Similarly, other SDL could reflect zygotic selection. The surprising finding was that SDL18.8 was detected in all populations, and the direction was skewed towards heterozygotes. Consequently, zygotic selection or heterosis could represent the underlying genetic mechanism for SDL18.8. Among developed introgression lines, SDL18.8 was introgressed as a heterozygote, further substantiating that a heterozygote state was preferred under competition. Six out of 11 SDL on chromosome 18 were dependent on the cytoplasmic environment. These results indicated that different SDL showed varying responses to the cytoplasmic environment. Overall, the results provided a novel strategy to analyze the molecular mechanisms, which could be further exploited in cotton interspecific breeding programs.

6.
PLoS One ; 10(6): e0130742, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110526

RESUMO

A population of 178 recombinant inbred lines (RILs) was developed using a single seed descendant from a cross between G. hirsutum. acc DH962 and G. hirsutum. cv Jimian5, was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644 polymorphic loci were used to construct a final genetic map, containing 616 loci and spanning 2016.44 cM, with an average of 3.27 cM between adjacent markers. Statistical analysis revealed that segregation distortion in the intraspecific population was more serious than that in the interspecific population. The RIL population and the two parents were phenotyped under 8 environments (two locations, six years), revealing a total of 134 QTL, including 64 for fiber qualities and 70 for yield components, independently detected in seven environments, explaining 4.40-15.28% of phenotypic variation (PV). Among the 134 QTL, 9 common QTL were detected in more than one environment, and 22 QTL and 19 new QTL were detected in combined analysis (E9). A total of 26 QTL hotspot regions were observed on 13 chromosomes and 2 larger linkage groups, and some QTL clusters related to fiber qualities or yield components were also observed. The results obtained in the present study suggested that to map accurate QTL in crops with larger plant types, such as cotton, phenotyping under multiple environments is necessary to effectively apply the obtained results in molecular marker-assisted selection breeding and QTL cloning.


Assuntos
Cromossomos de Plantas , Meio Ambiente , Gossypium/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fibra de Algodão , Ligação Genética , Fenótipo
7.
BMC Genomics ; 15: 1046, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25442170

RESUMO

BACKGROUND: Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop more molecular markers in cotton. RESULTS: A total of 1,349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, mining G. hirsutum unigenes, and analyzing 3' untranslated region (3'UTR) sequences. The marker polymorphisms were investigated using the two parents of the mapping population based on the single-strand conformation polymorphism (SSCP) analysis. Of all the markers, 137 (10.16%) were polymorphic, and revealed 142 loci. Linkage analysis using a BC1 population mapped 133 loci on the 26 chromosomes. Statistical analysis of base variations in SNPs showed that base transitions accounted for 55.78% of the total base variations and gene ontology indicated that cotton genes varied greatly in harboring SNPs ranging from 1.00 to 24.00 SNPs per gene. Sanger sequencing of three randomly selected SNP markers revealed discrepancy between the in silico predicted sequences and the actual sequencing results. CONCLUSIONS: In silico analysis is a double-edged blade to develop EST-SNP/InDel markers. On the one hand, the designed markers can be well used in tetraploid cotton genetic mapping. And it plays a certain role in revealing transition preference and SNP frequency of cotton genes. On the other hand, the developmental efficiency of markers and polymorphism of designed primers are comparatively low.


Assuntos
Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Gossypium/genética , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Tetraploidia , Sequência de Bases , Biologia Computacional , Ligação Genética , Loci Gênicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...