Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1344717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533402

RESUMO

With global climate change and rising temperatures, rainfall will change. The impact of global rainfall changes on ecosystems has prompted people to delve deeper into how changes in rainfall affect plant growth; Plant biomass, nutrient element content, and non-structural carbohydrate content are very sensitive to changes in precipitation. Therefore, understanding the impact of rainfall changes on seedlings is crucial. However, it is currently unclear how the seedlings of Fraxinus malacophylla Hemsl in rocky desertification areas respond to changes in rainfall. In this study, the response of biomass, nutrient accumulation, and NSC content of Fraxinus malacophylla Hemsl seedlings to different rainfall intervals and rainfall during the dry and rainy seasons was studied. Use natural rainfall duration of 5 days (T) and extended rainfall duration of 10 days(T+) as rainfall intervals; average monthly rainfall was used as the control (W), with a corresponding 40% increase in rainfall (W+) and a 40% decrease in rainfall (W-) as rainfall treatments. The research results indicate that the biomass of roots, stems, and leaves, as well as the accumulation of C, N, and P in Fraxinus malacophylla Hemsl seedlings increase with the increase of rainfall, while the soluble sugar and starch content show a pattern of first increasing and then decreasing. The biomass and nutrient accumulation of each organ showed root>leaf>stem. Except for the beginning of the dry season, prolonging the duration of rainfall in other periods inhibits the biomass accumulation of Fraxinus malacophylla Hemsl seedlings, and promotes the accumulation of C, N, and P nutrients and an increase in soluble sugar and starch content. There was a significant positive correlation (P<0.05) between the nutrient contents of C, N, and P in various organs, as well as between soluble sugar and starch content; And N: P>16, plant growth is limited by P element. These results indicate that changes in rainfall can affect the growth and development of Fraxinus malacophylla Hemsl seedlings, increasing rainfall can promote biomass and nutrient accumulation of Fraxinus malacophylla Hemsl seedlings, and prolonging rainfall intervals and reducing rainfall have inhibitory effects on them. The exploration of the adaptation of Fraxinus malacophylla Hemsl seedlings to rainfall patterns has promoted a basic understanding of the impact of rainfall changes on the growth of Fraxinus malacophylla Hemsl. This provides a theoretical basis for understanding how Fraxinus malacophylla Hemsl can grow better under rainfall changes and for future management of Fraxinus malacophylla Hemsl artificial forests in rocky desertification areas.

2.
Plant Physiol Biochem ; 201: 107860, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385031

RESUMO

Karst ecosystems are becoming increasingly problematic, and high calcium is one of the main characteristics of soils in rocky desertification areas. Chlorophyll fluorescence is one of the most important indicators of the extent to which plants are affected by their environment. There are few reports on the effects of changes in exogenous calcium levels on the chlorophyll fluorescence properties of Fraxinus malacophylla seedlings. In the present study, we investigated the growth, chlorophyll fluorescence properties and antioxidant system of Fraxinus malacophylla seedlings in response to exogenous calcium (as the concentrations of 0, 25, 50, 75 mmol L-1). The results showed that Ca2+ concentration (25-50 mmol L-1) treatment mainly promoted the growth, biomass accumulation, root activity, and chlorophyll synthesis and effect on chlorophyll fluorescence in Fraxinus malacophylla; the developed root system became a strong linking hub for calcium adaptation. In addition, the activities of the antioxidant enzymes peroxidase (POD) and catalase (CAT) are upregulated and play an important role in preventing excessive oxidative damage. OJIP test parameters changed significantly with the addition of exogenous calcium, and parameters related to each photosystem II (PSII) reaction centre, such as ABS/RC and DIo/RC, increased significantly in the OJIP test, with enhanced function of the PSII electron donor lateral oxygen evolution complex. In conclusion, the addition of exogenous calcium (25-50 mmol L-1) had an important protective effect on the photosynthetic mechanism of Fraxinus malacophylla, promoting photosynthesis, better growth and better adaptability.


Assuntos
Antioxidantes , Fraxinus , Antioxidantes/metabolismo , Clorofila , Cálcio/farmacologia , Plântula , Ecossistema , Fluorescência , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...