Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1165666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927605

RESUMO

Colorectal cancer (CRC) represents 10% of all cancer types, making it the third leading cause of cancer-related deaths globally. Metastasis is the primary factor causing mortality in CRC patients. Approximately 22% of CRC-related deaths have metastasis present at diagnosis, with approximately 70% of these cases recurring. Recently, with the application of novel targeted drugs, targeted therapy has become the first-line option for individualized and comprehensive treatment of CRC. The management of these patients remains a significant medical challenge. The most prevalent targeted therapies for CRC in clinical practice focus on anti-vascular endothelial growth factor and its receptor, epidermal growth factor receptor (EGFR), and multi-target kinase inhibitors. In the wake of advancements in precision diagnosis and widespread adoption of second-generation sequencing (NGS) technology, rare targets such as BRAF V600E mutation, KRAS mutation, HER2 overexpression/amplification, and MSI-H/dMMR in metastatic colorectal cancer (mCRC) are increasingly being discovered. Simultaneously, new therapeutic drugs targeting these mutations are being actively investigated. This article reviews the progress in clinical research for developing targeted therapeutics for CRC, in light of advances in precision medicine and discovery of new molecular target drugs.

2.
Am J Transl Res ; 15(2): 817-833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915723

RESUMO

BACKGROUND: The expression of aberrant interferon-stimulated gene 15 (ISG15) is connected with various human diseases, including cancer. ISG15 is involved in tumor formation and metastasis. However, its role in osteosarcoma is uncertain. METHODS: ISG15 expression in pan-cancer from RNA Sequencing data were obtained from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. The relationship between ISG15 expression and prognosis was assessed through TCGA clinical survival data. Immunohistochemistry (IHC) images of ISG15 were retrieved using the Human Protein Atlas to analyze the differences in selected normal and tumor tissues. Gene enrichment analysis and signaling pathway analysis were used to assess the potential role of ISG15 in sarcoma, and the correlation between ISG15 expressions and immune cell infiltration levels was estimated by immune infiltration analysis. The expression levels of ISG15 were assessed by qRT-PCR and IHC. Colony formation, wound healing assay and transwell assay were used to detect the effects of ISG15 on the biological behaviors of osteosarcoma cells. The correlation between ISG15 levels and CD8+/CD68+ cells was further examined by double-labeled immunofluorescence. The chemotactic effect of ISG15 on CD8+/CD68+ cells was demonstrated by chemotactic experiments and flow cytometry. RESULTS: ISG15 was highly expressed in most cancers, while high ISG15 expression was significantly correlated with poor overall survival. Gene enrichment analysis in sarcoma suggested that antigen processing and presentation might be involved in the oncogenic mechanism of ISG15. Further immune infiltration analysis showed that high ISG15 expression might reflect the infiltration level of certain immune cells. Additionally, our verification showed that ISG15 was significantly related to the occurrence and metastasis of osteosarcoma, and knockdown of ISG15 significantly altered cell biological behavior, resulting in decreased proliferation, migration and invasion capabilities of osteosarcoma cells. The high expression of ISG15 in osteosarcoma tissue was associated with a high level of CD68+ immune cell infiltration while a low level of CD8+ T cell infiltration. CD68+ immune cells were recruited in vitro by overexpression of ISG15, which on the contrary could weaken the chemotaxis of CD8+ T cells. CONCLUSION: High ISG15 expression is an inherent feature of osteosarcoma and triggers tumorigenesis and metastasis by regulating tumor immunogenicity. ISG15 is expected to be the target of osteosarcoma treatment.

3.
Am J Transl Res ; 15(2): 949-966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915748

RESUMO

OBJECTIVE: To investigate the mechanism underlying the role of TEX41 in lung adenocarcinoma (LUAD) bone metastasis (BM). METHODS: We analyzed the biological functions and molecular mechanisms of TEX41 using bioinformatics. TEX41 and Runx2 expressions were measured in clinical tissue samples and cell lines by quantitative PCR. The effects of TEX41 on LUAD cell proliferation, migration, invasion and metastasis as well as its mechanism of action were investigated. Fluorescence in-situ hybridization (FISH) was performed to determine TEX41 and Runx2 colocalization. Subcutaneous tumor growth and BM were evaluated in nude mice by X-ray and hematoxylin and eosin (HE) staining. RESULTS: TEX41 was dramatically increased in LUAD BM tissue, indicating a poorer prognosis in patients with LUAD and BM. TEX41 knockdown suppressed the migration and metastasis of LUAD cells, whereas TEX41 overexpression promoted these processes. Data from X-ray and HE staining showed that TEX41 supported the BM in LUAD. TEX41 overexpression induced autophagy in LUAD cells, as demonstrated by changes in autophagy markers. Results of FISH showed that TEX41 and Runx2 colocalized in the nucleus, and Runx2 expression was regulated by TEX41. The effects of TEX41 on LUAD cell migration, invasion, metastasis and autophagy were counteracted by Runx2 inhibition. Moreover, the role of TEX41 in the metastasis was partially dependent on autophagy, and phosphoinositide 3-kinase (PI3K)-AKT might be the major signaling pathway involved in TEX41-regulated autophagy. CONCLUSION: TEX41 promotes autophagy in LUAD cells by upregulating Runx2 to mediate LUAD migration, invasion and BM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...