Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromolecular Med ; 24(2): 139-154, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34109563

RESUMO

Microglia-mediated neuroinflammation is known to play a pivotal role in the pathogenesis of different neurological diseases. Gastrodin, a phenolic glucoside, has been reported to exert anti-inflammatory effects in activated microglia challenged with lipopolysaccharide (LPS); however, the underlying mechanism has remained obscure. The present study aimed to ascertain if Gastrodin would regulate the Notch signaling pathway involved in microglia activation. We show here that LPS increased the expression of various members of the Notch-1 pathway, including intracellular Notch receptor domain (NICD), recombining binding protein suppressor of hairless (RBP-Jκ) and transcription factor hairy and enhancer of split-1 (Hes-1) in microglia in postnatal rat brain and in BV-2 microglia. Remarkably, Gastrodin was found to markedly attenuate the expression of the above various biomarkers both in vivo and in vitro. Moreover, increased phosphorylation level of ERK, JNK and P38 induced by LPS was attenuated with pretreatment of Notch-1 signaling inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alany1-Sphenyglycinet-butylester (DAPT) as well as Gastrodin. Gastrodin mimicked the effects of DAPT by inhibiting the LPS-induced expression of IL-1ß, IL-6, IL-23, TNF-α and NO. Moreover, lentivirus transfection mediated NICD overexpression inhibited the anti-inflammatory effects of Gastrodin. Furthermore, the activation of Notch-1 signaling promoted microglia migration and Gastrodin could inhibit the migration of activated BV-2 microglia by regulating the Notch-1 signaling pathway. In light of the above, our results indicate that Notch-1 signaling pathway is involved in the anti-inflammatory effects of Gastrodin against LPS-induced microglia activation. These findings provide a new biological target of Gastrodin for the treatment of neuroinflammatory disorders.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Anti-Inflamatórios/farmacologia , Álcoois Benzílicos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Ratos , Transdução de Sinais
2.
Cell Death Dis ; 12(6): 580, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34091587

RESUMO

Long noncoding RNAs (lncRNAs) and their crosstalks with other RNAs have been revealed to be closely related to tumorigenesis and development, but their role in invasive pituitary adenoma (IPA) remains largely unclear. In our study, LINC00473 was identified as the most upregulated lncRNA in IPA by whole transcriptome RNA sequencing (RNA-Seq). Further, its related signaling pathway LINC00473/miR-502-3p/KMT5A was obtained by constructing a competing endogenous RNA (ceRNA) regulatory network. Their expression in IPA and non-invasive pituitary adenoma (NIPA) tissues was verified by qRT-PCR. Then the effects and mechanisms of LINC00473 and its ceRNA network on the proliferation of pituitary adenoma (PA) cells were confirmed by gene overexpression or silencing techniques combined with CCK-8 assay, EdU staining, flow cytometry assay, and double luciferase reporter gene assay in PA cell lines AtT-20 and GT1-1 in vitro and in a xenograft model in vivo. LINC00473 is overexpressed in IPA and can promote PA cells proliferation. Mechanistically, overexpression of LINC00473 restricts miR-502-3p through the ceRNA mechanism, upregulates KMT5A expression, and promotes the expression of cyclin D1 and CDK2, which is conducive to the cell cycle process, thereby promoting the proliferation of PA cells, involving IPA progression.


Assuntos
Adenoma/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/metabolismo , Neoplasias Hipofisárias/metabolismo , RNA Longo não Codificante/metabolismo , Adenoma/genética , Adulto , Animais , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Hipofisárias/genética , RNA Longo não Codificante/genética , Regulação para Cima
3.
J Cell Mol Med ; 25(12): 5769-5781, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973365

RESUMO

Abnormal accumulation of lipids and massive deposition of foam cells is a primary event in the pathogenesis of atherosclerosis. Recent studies have demonstrated that autophagy and lysosomal function of atherosclerotic macrophages are impaired, which exacerbates the accumulation of lipid in macrophages and formation of foam cells. Gastrodin, a major active component of Gastrodia elata Bl., has exerted a protective effect on nervous system, but the effect of gastrodin on atherosclerotic vascular disease remains unknown. We aimed to evaluate the effect of gastrodin on autophagy and lysosomal function of foam cells and explored the mechanism underlying gastrodin's effect on the formation of foam cells. In an in vitro foam cell model constructed by incubating macrophages with oxygenized low-density lipoproteins (ox-LDL), our results showed that lysosomal function and autophagy of foam cells were compromised. Gastrodin restored lysosomal function and autophagic activity via the induction of lysosomal biogenesis and autophagy. The restoration of lysosomal function and autophagic activity enhanced cholesterol efflux from macrophages, therefore, reducing lipid accumulation and preventing formation of foam cells. AMP-activated protein kinase (AMPK) was activated by gastrodin to promote phosphorylation and nuclear translocation of forkhead box O1 (FoxO1), subsequently resulting in increased transcription factor EB (TFEB) expression. TFEB was activated by gastrodin to promote lysosomal biogenesis and autophagy. Our study revealed that the effect of gastrodin on foam cell formation and that induction of lysosomal biogenesis and autophagy of foam cells through AMPK-FoxO1-TFEB signalling axis may be a novel therapeutic target of atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Autofagia , Álcoois Benzílicos/farmacologia , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos
4.
Bioact Mater ; 6(2): 404-419, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32995669

RESUMO

Vascular grafts must avoid negative inflammatory responses and thrombogenesis to prohibit fibrotic deposition immediately upon implantation and promote the regeneration of small diameter blood vessels (<6 mm inner diameter). Here, polyurethane (PU) elastomers incorporating anti-coagulative and anti-inflammatory Gastrodin were fabricated. The films had inter-connected pores with porosities equal to or greater than 86% and pore sizes ranging from 250 to 400 µm. Incorporation of Gastrodin into PU films resulted in desirable mechanical properties, hydrophilicity, swelling ratios and degradation rates without collapse. The released Gastrodin maintained bioactivity over 21 days as assessed by its anti-oxidative capability. The Gastrodin/PU had better anti-coagulation response (less observable BSA, fibrinogen and platelet adhesion/activation and suppressed clotting in whole blood). Red blood cell compatibility, measured by hemolysis, was greatly improved with 2Gastrodin/PU compared to other Gastrodin/PU groups. Notably, Gastrodin/PU upregulated anti-oxidant factors Nrf2 and HO-1 expression in H2O2 treated HUVECs, correlated with decreasing pro-inflammatory cytokines TNF-α and IL-1ß in RAW 264.7 cells. Upon implantation in a subcutaneous pocket, PU was encapsulated by an obvious fibrous capsule, concurrent with a large amount of inflammatory cell infiltration, while Gastrodin/PU induced a thinner fibrous capsule, especially 2Gastrodin/PU. Further, enhanced adhesion and proliferation of HUVECs seeded onto films in vitro demonstrated that 2Gastrodin/PU could help cell recruitment, as evidenced by rapid host cell infiltration and substantial blood vessel formation in vivo. These results indicate that 2Gastrodin/PU has the potential to facilitate blood vessel regeneration, thus providing new insight into the development of clinically effective vascular grafts.

5.
Neuromolecular Med ; 22(3): 401-410, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32253686

RESUMO

Reactive oxygen species (ROS) are continuously produced as byproducts of aerobic metabolism. Oxidative stress (OS) plays an important role in the occurrence of several neurodegenerative diseases as well as aging because of the accumulation of ROS. Gnaq is a member of G protein α subunits. It has been reported that the expression level of Gnaq in the mouse forebrain cortex was significantly decreased with age in our previous study; therefore, we supposed that Gnaq contributes to attenuate the OS. In this study, we generated a Gnaq-overexpression cell using gene recombinant technique and lentivirus transfection technique in a neuron-like PC12 cell, and investigated whether Gnaq had antioxidant effects in PC12 cells treated with H2O2. The viability of cells, concentration of ROS, Nrf2 nuclear translocation, expression of antioxidant enzymes, activation of NF-κB and apoptosis were compared between Gnaq-PC12 cells and Vector-PC12 cells. Results showed that, compared with Vector-PC12 cells, the antioxidative ability of Gnaq-PC12 cells was significantly improved, while the ROS level in Gnaq-PC12 cells was significantly decreased. Nrf2 nuclear translocation was up-regulated and NF-κB nuclear translocation was down-regulated in Gnaq-PC12 cells after H2O2 treatment. The results suggest that Gnaq plays a crucial role in neuroprotection in PC12 cells. A possible mechanism for this would be that the overexpressed Gnaq enhances the antioxidative effect mediated by Nrf2 signal pathway and inhibits the cellular damaging effect through NF-κB signal pathway.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Células PC12 , Transporte Proteico , Ratos , Espécies Reativas de Oxigênio , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais
6.
CNS Neurosci Ther ; 26(1): 55-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087449

RESUMO

BACKGROUND: Neural stem cells (NSCs) transplantation is considered a promising treatment for Parkinson's disease. But most NSCs are differentiated into glial cells rather than neurons, and only a few of them survive after transplantation due to the inflammatory environment. METHODS: In this study, neural stem cells (NSCs) and microglial cells both forced with the Nurr1 gene were transplanted into the striatum of the rat model of PD. The results were evaluated through reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence analysis. RESULTS: The behavioral abnormalities of PD rats were improved by combined transplantation of NSCs and microglia, both forced with Nurr1. The number of tyrosine hydroxylase+ cells in the striatum of PD rats increased, and the number of Iba1+ cells decreased compared with the other groups. Moreover, the dopamine neurons differentiated from grafted NSCs could still be detected in the striatum of PD rats after 5 months. CONCLUSIONS: The results suggested that transplantation of Nurr1-overexpressing NSCs and microglia could improve the inhospitable host brain environments, which will be  a new potential strategy for the cell replacement therapy in PD.


Assuntos
Terapia Genética/métodos , Microglia/transplante , Células-Tronco Neurais/transplante , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Transtornos Parkinsonianos/terapia , Transplante de Células-Tronco/métodos , Anfetamina , Animais , Comportamento Animal , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Corpo Estriado/cirurgia , Neurônios Dopaminérgicos/transplante , Encefalite/terapia , Feminino , Hidroxidopaminas , Masculino , Proteínas dos Microfilamentos/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Ratos , Ratos Sprague-Dawley
7.
Front Neurosci ; 13: 1239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824244

RESUMO

Cognitive dysfunction is a very severe consequence of diabetes, but the underlying causes are still unclear. Recently, the cerebellum was reported to play an important role in learning and memory. Since long-term depression (LTD) is a primary cellular mechanism for cerebellar motor learning, we aimed to explore the role of cerebellar LTD pathways in diabetic rats and the therapeutic effect of gastrodin. Diabetes was induced by a single injection of streptozotocin into adult Sprague-Dawley rats. Motor learning ability was assessed by a beam walk test. Pathological changes of the cerebellum were assessed by Hematoxylin-Eosin (HE) and Nissl staining. Cellular apoptosis was assessed by anti-caspase-3 immunostaining. Protein expression levels of LTD pathway-related factors, including GluR2, protein kinase C (PKC), NR2A, and nNOS, in the cerebellar cortex were evaluated by western blotting and double immunofluorescence. The NO concentration was measured. The cellular degeneration and the apoptosis of Purkinje cells were evident in the cerebellum of diabetic rats. Protein expression levels of GluR2 (NC9W: 1.26 ± 0.12; DM9W + S: 0.81 ± 0.07), PKC (NC9W: 1.66 ± 0.10; DM9W + S: 0.58 ± 0.19), NR2A (NC9W: 1.40 ± 0.05; DM9W + S: 0.63 ± 0.06), nNOS (NC9W: 1.26 ± 0.12; DM9W + S: 0.68 ± 0.04), and NO (NC9W: 135.61 ± 31.91; DM9W + S: 64.06 ± 24.01) in the cerebellum were significantly decreased in diabetic rats. Following gastrodin intervention, the outcome of motor learning ability was significantly improved (NC9W: 6.70 ± 3.31; DM9W + S: 20.47 ± 9.43; DM9W + G: 16.04 ± 7.10). In addition, degeneration and apoptosis were ameliorated, and this was coupled with the elevation of the protein expression of the abovementioned biomarkers. Arising from the above, we concluded that gastrodin may contribute to the improvement of motor learning by protecting the LTD pathways in Purkinje cells.

8.
Mol Diagn Ther ; 23(1): 53-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604399

RESUMO

Keloids are a common dermal pathological disorder characterized by the excessive deposition of extracellular matrix components; however, the exact pathogenesis of the disease is still not clear. Studies increasingly suggest that microRNAs (miRNAs) can play a key role in the process of keloid scarring. In this study, the valuable miRNAs and target genes were screened and the interaction network was constructed. We also predicted target genes of reported miRNAs using TargetScan and miRTarBase software. Cytoscape 3.0.1 further showed the interaction network of miRNA and target genes. Among the various miRNAs involved in keloid pathogenesis, miRNA-21, miRNA-141-3p, miRNA-181a, and miRNA-205 were thought to up-regulate the proliferation and decrease apoptosis of keloid-derived fibroblasts through the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway. miRNA-637 and miRNA-1224 inhibited keloid fibroblasts proliferation and promoted apoptosis via the transforming growth factor (TGF)-ß1/Smad3 signaling pathway. miRNA-21 was also involved in mitochondrial-mediated apoptosis and miRNA-31 targeted vascular endothelial growth factor (VEGF) signaling pathway. miRNA-199a may be one key factor in the cell cycle checkpoint signal pathway of keloid-derived fibroblasts. It was also found that miRNA-29a and miRNA-196a mediated collagen metabolism. These pivotal miRNAs and regulatory processes further improve the data on the epigenetic mechanisms of keloids and provide hope for the use of small molecules in the treatment of keloids.


Assuntos
Cicatriz/genética , Queloide/genética , MicroRNAs/genética , Terapia de Alvo Molecular , Apoptose/genética , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Matriz Extracelular/genética , Humanos , Queloide/tratamento farmacológico , Queloide/patologia , MicroRNAs/antagonistas & inibidores , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Proteína Smad3/genética , Software , Fator de Crescimento Transformador beta1/genética
9.
CNS Neurosci Ther ; 24(9): 790-800, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29450981

RESUMO

INTRODUCTION: Neural stem cells (NSCs) are the most promising cells for cell replacement therapy for Parkinson's disease (PD). However, a majority of the transplanted NSCs differentiated into glial cells, thereby limiting the clinical application. Previous studies indicated that chronic neuroinflammation plays a vital role in the degeneration of midbrain DA (mDA) neurons, which suggested the developing potential of therapies for PD by targeting the inflammatory processes. Thus, Nurr1 (nuclear receptor-related factor 1), a transcription factor, has been referred to play a pivotal role in both the differentiation of dopaminergic neurons in embryonic stages and the maintenance of the dopaminergic phenotype throughout life. AIM: This study investigated the effect of Nurr1 on neuroinflammation and differentiation of NSCs cocultured with primary microglia in the transwell coculture system. RESULTS: The results showed that Nurr1 exerted anti-inflammatory effects and promoted the differentiation of NSCs into dopaminergic neurons. CONCLUSIONS: The results suggested that Nurr1 protects dopaminergic neurons from neuroinflammation insults by limiting the production of neurotoxic mediators by microglia and maintain the survival of transplanted NSCs. These phenomena provided a new theoretical and experimental foundation for the transplantation of Nurr1-overexpressed NSCs as a potential treatment of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Células HEK293 , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
10.
Acta Biochim Biophys Sin (Shanghai) ; 50(2): 144-155, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29324976

RESUMO

Ginsenoside Rg1 (Rg1) has been widely used in a broad range of cardiovascular and cerebral-vascular diseases because of its unique therapeutic properties. However, the underlying mechanisms of Rg1 in the treatment of atherosclerosis have not been fully explored. This study sought to determine the precise molecular mechanisms on how Rg1 might be involved in regulating apoptosis in serum deprivation-induced Raw264.7 macrophages and primary bone marrow-derived macrophages. Results demonstrated that Rg1 treatment effectively suppressed apoptosis and the expression of phosphorylation level of mTOR induced by serum deprivation in Raw264.7 macrophages; the expressions of autophagic flux-related proteins including Atg5, Beclin1, microtubule-associated protein 1 light chain 3 (LC3), p62/SQSMT1, and the phosphorylation level of AMPK were concomitantly up-regulated. 3-Methyl-adennine (3-MA), the most widely used autophagy inhibitor, strongly up-regulated the expression of cleaved caspase-3, and blocked the anti-apoptosis function of Rg1 in macrophages. Importantly, autophagic flux was activated by Rg1, while Beclin1 knockdown partially abolished the anti-apoptosis of Rg1. Moreover, compound C, an AMPK inhibitor, partially decreased the expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1, which were increased by Rg1. AICAR, an AMPK inducer, promoted the protein expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1. In conclusion, Rg1 significantly suppressed apoptosis induced by serum deprivation in macrophages. Furthermore, Rg1 could effectively induce the autophagic flux by attenuating serum deprivation-induced apoptosis in Raw264.7 macrophages through activating the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ginsenosídeos/farmacologia , Macrófagos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Western Blotting , Meios de Cultura Livres de Soro/farmacologia , Ginsenosídeos/química , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
11.
Adv Funct Mater ; 28(34)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31588204

RESUMO

Increasing occurrences of degenerative diseases, defective tissues and severe cancers heighten the importance of advanced biomedical treatments, which in turn enhance the need for improved biomaterials with versatile theranostic functionalities yet using minimal design complexity. Leveraging the advantages of citrate chemistry, we developed a multifunctional citrate-based biomaterial platform with both imaging and therapeutic capabilities utilizing a facile and efficient one-pot synthesis. The resulting aniline tetramer doped biodegradable photoluminescent polymers (BPLPATs) not only possess programmable degradation profiles (<1 to >6 months) and mechanical strengths (~20 MPa to > 400 MPa), but also present a combination of intrinsic fluorescence, photoacoustic (PA) and electrical conductivity properties. BPLPAT nanoparticles are able to label cells for fluorescence imaging and perform deep tissue detection with PA imaging. Coupled with significant photothermal performance, BPLPAT nanoparticles demonstrate great potential for thermal treatment and in vivo real-time detection of cancers. Our results on BPLPAT scaffolds demonstrate three-dimensional (3D) high-spatial-resolution deep tissue PA imaging (23 mm), as well as promote growth and differentiation of PC-12 nerve cells. We envision that the biodegradable dual-imaging-enabled electroactive citrate-based biomaterial platform will expand the currently available theranostic material systems and open new avenues for diversified biomedical and biological applications via the demonstrated multi-functionality.

12.
Oncotarget ; 8(39): 65759-65769, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029469

RESUMO

Breast cancer incidence in Japanese women has more than tripled over the past two decades. We have previously shown that this marked increase is mostly due to an increase in the estrogen receptor (ER)-positive, HER2-negative subtype. We conducted a case-control study; ER-positive, HER2-negative breast cancer patients who were diagnosed since 2011 and women without disease were recruited. Environmental factors, serum levels of testosterone and 25-hydroxyvitamin D, and common genetic variants reported as predictors of ER-positive breast cancer or found in Asian women were evaluated between patients and controls in pre- and postmenopausal women. To identify important risk predictors, risk prediction models were created by logistic regression models. In premenopausal women, two environmental factors (history of breastfeeding, and history of benign breast disease) and four genetic variants (TOX3-rs3803662, ESR1-rs2046210, 8q24-rs13281615, and SLC4A7-rs4973768) were considered to be risk predictors, whereas three environmental factors (body mass index, history of breastfeeding, and hyperlipidemia), serum levels of testosterone and 25-hydroxyvitamin D, and two genetic variants (TOX3-rs3803662 and ESR1-rs2046210) were identified as risk predictors. Inclusion of common genetic variants and serum hormone measurements as well as environmental factors improved risk assessment models. The decline in the birthrate according to recent changes of lifestyle might be the main cause of the recent notable increase in the incidence of ER-positive breast cancer in Japanese women.

13.
Angew Chem Int Ed Engl ; 56(17): 4862-4866, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28371275

RESUMO

It is of great significance to depolymerize used or waste polymers to recover the starting monomers suitable for repolymerization reactions that reform recycled materials no different from the virgin polymer. Herein, we report a novel recyclable plastic: degradable polycarbonate synthesized by dinuclear chromium-complex-mediated copolymerization of CO2 with 1-benzyloxycarbonyl-3,4-epoxy pyrrolidine, a meso-epoxide. Notably, the novel polycarbonate with more than 99 % carbonate linkages could be recycled back into the epoxide monomer in quantitative yield under mild reaction conditions. Remarkably, the copolymerization/depolymerization processes can be achieved by the ON/OFF reversible temperature switch, and recycled several times without any change in the epoxide monomer and copolymer. These characteristics accord well with the concept of perfectly sustainable polymers.

14.
Acta Biochim Biophys Sin (Shanghai) ; 49(5): 428-434, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369206

RESUMO

Gnaq is a member of G protein family and is rich in brain tissue. It has attracted the attention of many researchers in melanoma due to its high ratio of mutation. We have previously reported that the expression level of Gnaq in the mouse forebrain cortex was significantly decreased with age. Oxidative stress (OS) is the main cause leading to brain aging and related diseases. The roles and mechanisms of Gnaq in antioxidation in the brain have not been fully explored. In the present study, gene recombinant technique and lentivirus transfection technique were used to generate a Gnaq-overexpression cell model (Gnaq-SY5Y) coupled with H2O2 to build an OS model. The viability of cells, concentration of reactive oxygen species (ROS), apoptosis-related proteins (Bcl-2 and Bax), and signal pathways (NF-κB and Erk1/2) were compared between model cells and control cells. Results showed that the antioxidative ability of Gnaq-SY5Y cells was significantly improved. Concomitantly, the ROS level in Gnaq-SY5Y cells was significantly decreased whether the cells were subject to or not to H2O2 treatment. Anti-apoptotic protein Bcl-2 was up-regulated and apoptosis-promoting protein Bax was down-regulated in Gnaq-SY5Y cells after treatment with H2O2. NF-κB and phosphorylated Erk1/2 (p-Erk1/2) was significantly down-regulated in Gnaq-SY5Y cells. H2O2 treatment decreased Gnaq expression but increased NF-κB and p-Erk1/2 expressions in Gnaq-SY5Y cells. It is therefore concluded that Gnaq plays a pivotal role in antioxidation in neural cells. A possible mechanism for this would be that the overexpressed Gnaq inhibits the cellular damaging effect mediated by NF-κB and Erk1/2 signal pathways.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Neuroproteção/fisiologia , Estresse Oxidativo/fisiologia , Apoptose/fisiologia , Linhagem Celular , Humanos , Espécies Reativas de Oxigênio
15.
Acta Biochim Biophys Sin (Shanghai) ; 47(2): 65-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25605419

RESUMO

Oxidative stress, inflammatory response, and mitogen-activated protein kinases (MAPKs) cascade are significant pathogenic factors of osteoporosis. It has been reported that elevated homocysteine (Hcy) may activate oxidative stress and reduce bone mineral density in post-menopausal osteoporosis. Moreover, hormone replacement therapy has been widely used in clinic to prevent and treat post-menopausal women with osteoporosis and osteoporotic fracture, but the molecular mechanisms and relevant signal transduction pathways underlying the action of Hcy remain unclear. In this study, we investigated the effects of 17ß-estradiol (17ß-E2) on the Hcy-induced oxidative stress, inflammatory response and MAPKs cascade, as well as the underlying signal transduction pathway in murine Raw 264.7 cells. The reactive oxygen species (ROS) was assessed by fluorospectrophotometry. The proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß were analyzed by double-immunofluorescence labeling and reverse transcriptase polymerase chain reaction assay, respectively. Furthermore, phosphorylation levels of MAPKs cascade were measured by western blot analysis. A specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, Wortmannin (1 µM) was employed to determine whether PI3-K/Akt signaling pathway mediated the 17ß-E2's effect on Raw 264.7 cells. 17ß-E2 markedly decreased the ROS production induced by Hcy, the expression of TNF-α and IL-1ß at protein and mRNA levels, and down-regulated the phosphorylation of MAPKs (ERK1/2, JNK and p38). These suppressing effects of 17ß-E2 on Hcy-induced changes were reversed by pretreatment with PI3-K inhibitor Wortmannin. The results indicate that 17ß-estradiol may attenuate Hcy-induced oxidative stress, inflammatory response and up-regulation of MAPKs in Raw 264.7 cells via PI3-K/Akt signal transduction pathway.


Assuntos
Estradiol/metabolismo , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Sobrevivência Celular , Homocisteína/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Osteoporose/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Biochem Pharmacol ; 85(8): 1124-33, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376120

RESUMO

The phenolic glucoside gastrodin, a main constituent of a Chinese traditional herbal medicine, has been known to display several biological and pharmacological properties. However, the role and precise molecular mechanisms explaining how gastrodin suppresses the inflammatory response in septic cardiac dysfunction are unknown. To study this, rat H9c2 cardiomyocytes were treated with gastrodin and/or lipopolysaccharide (LPS). Our results showed that gastrodin treatment strongly suppressed nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) family activation and upregulation of the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in LPS-stimulated H9c2 cardiomyocytes. Simultaneously, gastrodin obviously upregulated the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in a dose-dependent manner. However, wortmannin, a specific PI3-K inhibitor, blocked the inhibitory effects of gastrodin on LPS-stimulated H9c2 cardiomyocytes. Furthermore, PI3-K/Akt inhibition partially abolished the inhibitory effects of gastrodin on the phosphorylation of inhibitor κB-α (IκB-α), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and activity of NF-κB. Here we report activation of the PI3-K/Akt signaling by gastrodin and that inhibition of this pathway reverses the inhibitory effects of gastrodin on NF-κB and MAPKs activation in H9c2 cardiomyocytes.


Assuntos
Anti-Inflamatórios/farmacologia , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Androstadienos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Ratos , Fator de Necrose Tumoral alfa/biossíntese , Wortmanina
17.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(10): 866-9, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24377894

RESUMO

OBJECTIVE: Inflammation serves as the initial pathologic step of cardiovascular diseases including atherosclerosis. Resveratrol possesses many pharmacological properties including antioxidant, cardioprotective and anti-cancer effects. In this study, we investigate the anti-inflammatory effect and mechanisms of resveratrol in an atherosclerotic rabbit model. METHODS: Rabbit were assigned to six groups (n = 10 each): control, high fat diet group, resveratrol low, medium and high dose groups, resveratrol pretreatment group. The serum tumor necrosis factor-α (TNF- α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were analyzed by Enzyme-linked immuno sorbent assay(ELISA). Phosphorylation levels of mitogen-activated protein kinases (MAPKs) cascades and NF-κB were determined by Western blot. RESULTS: Compared with the control group, the expression of serum inflammatory factors IL-1ß, IL-6, TNF-α were increased in high-fat group (all P < 0.05). Compared with high-fat group, the expressions of IL-6, IL-1ß, TNF-α were significantly reduced in resveratrol low, medium, high dose groups and resveratrol pretreatment group (all P < 0.01), and this effect is dose-dependent. In addition, the NF-κB, p38MAPK, JNK, ERK1/2 protein phosphorylation in high-fat group were significantly upregulated compared with control group (P < 0.05), which (except ERK1/2 phosphorylation level) were significantly downregulated in resveratrol treatment group and resveratrol pretreatment group. CONCLUSION: This study indicates that resveratrol reduces serum inflammatory cytokines in this atherosclerotic rabbit model via down-regulation phosphorylation of NF-κB, and MAPKs signaling, which might serve as the anti-inflammatory molecular basis of resveratrol.


Assuntos
Aterosclerose/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação , Coelhos , Resveratrol , Estilbenos/uso terapêutico , Fator de Necrose Tumoral alfa/sangue
18.
PLoS One ; 7(2): e32195, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363816

RESUMO

BACKGROUND: Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. METHODOLOGY/PRINCIPAL FINDINGS: BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). CONCLUSION AND IMPLICATIONS: This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol.


Assuntos
Inflamação/patologia , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citoproteção/efeitos dos fármacos , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B , Inflamação/enzimologia , Inflamação/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/patologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Sirolimo/farmacologia , Estilbenos/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Acta Biochim Biophys Sin (Shanghai) ; 41(8): 625-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19657563

RESUMO

It has been reported that phospholipase C-gamma1 (PLC-gamma1) plays an important protective role in hydrogen peroxide (H(2)O(2))-induced pheochromocytoma (PC) 12 cells death. However, most studies have used high doses of H2O2 and the downstream targets of PLC-gamma1 activation remain to be identified. The present study was designed to examine the roles of PLC-gamma1 signaling pathway in the apoptosis of PC12 cells induced by low dose of H(2)O(2), as well as the downstream factors involved in this pathway. Low-dose treatment of H(2)O(2) resulted in PLC-gamma1 tyrosine phosphorylation in a time-dependent manner and H(2)O(2) killed the PC12 cells by inducing necrosis. In contrast, pretreatment of PC12 cells with U73122, a specific inhibitor of PLC, markedly increased the percentage of dead cells. The mode of cell death was converted to apoptosis as determined by Hoechst/PI nuclear staining and fluorescence microscopy. Western blot analysis demonstrated that the expression of Bcl-2 protein and the activation of pro-caspase-3 were not significantly affected by low dose of H(2)O(2) alone. However, after pretreatment with U73122, Bcl-2 protein expression was dramatically decreased and the activation of pro-caspase-3 was significantly increased. We concluded that PLC-gamma1 plays an important protective role in H(2)O(2)-induced PC12 cells death. Bcl-2 and caspase-3 probably participate in the signaling pathway as downstream factors.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fosfolipase C gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oxidantes/farmacologia , Células PC12 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...