Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(35): 19079-19084, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34187100

RESUMO

Controlling the chemo- and regioselectivity of transition-metal-catalyzed C-C activation remains a great challenge. The transformations of benzocyclobutenones (BCBs) usually involve the cleavage of C1-C2 bond. In this work, an unprecedented highly selective cleavage of C1-C8 bond with the insertion of alkynes is achieved by using blocking strategy via Ni catalysis, providing an efficient method for synthesis of 1,8-disubstituted naphthalenes. Notably, the blocking group could be readily removed after the transformation.

2.
Biochim Biophys Acta ; 1843(9): 2055-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915000

RESUMO

Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.


Assuntos
MicroRNAs/metabolismo , Peptidilprolil Isomerase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , MicroRNAs/genética , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/antagonistas & inibidores , Peptidilprolil Isomerase/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...