Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 601-608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428117

RESUMO

Li-rich layered oxides cathodes (LLOs) as the promising next-generation cathode materials can provide ultrahigh capacity and energy density due to their distinctive anionic redox chemistry. Unfortunately, severe interfacial side reactions, surface structural degradation and sluggish Li+ kinetics have resulted in low initial coulombic efficiency (ICE), capacity decay and poor rate performance, restricting their practical applications for high-energy-density lithium-ion batteries. Herein, Surface structure regulation strategy used as surface modified agent is proposed to activate the anionic redox chemistry via ammonium tungstate treatment. Experimental results showcase that dual coating layer spinel-like structure LiMn2O4 and Li2WO4 have been successfully constructed on the surface of LLOs. The surface spinel-like structure providing 3 D Li+ diffusion channels together with fast-ion conductive layer decrease the interfacial Li+ diffusion barrier and boost the fasting Li+ kinetics. In addition, the in-situ reconstruction layer can further alleviate the interfacial side reactions and reinforce the surface structural stability. As a result, the ICE of modified LLOs can be precisely increased from 74.71 % to 107.42 % with the adjustment of ammonium tungstate usage. Moreover, it delivers a high reversible capacity of 279.5 mAh/g at 0.1 C, as well as excellent rate capability with capacity of 147.2 mAh/g at 5 C. This work provides a significant reference for designing high-energy-density LLOs via surface structure regulation strategy.

2.
Small ; : e2401132, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552226

RESUMO

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

3.
J Colloid Interface Sci ; 658: 976-985, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157621

RESUMO

Sacrificial cathode additives have emerged as a tempting strategy to compensate the initial capacity loss (ICL) in Li-ion batteries (LIBs) manufacturing. However, the utilization of sacrificial cathode additives inevitably brings residuals, side reactions, and negative impacts in which relevant researches are still in the early stage. In this study, we conduct a systematic investigation on the effects of employing a nickel-based sacrificial additive, Li2Cu0.1Ni0.9O2 (LCNO), and propose a feasible strategy to achieve advantageous surface reconstruction on LCNO. Specifically, we build a Li5AlO4 (LAO) coating layer on the LCNO through dry ball milling and annealing treatment. This process not only consumes surface residual lithium compounds on LCNO but also demonstrates minimal detrimental effects on its performance. The surface reconstructed LCNO (SR-LCNO) reveals mitigated gas generation and suppressed structure degradation under high working voltage (>4.1 V), thereby causing negligible negative effects on the cycling capability and rate performance of commercial cathode materials. The full cells containing SR-LCNO deliver significantly improved electrochemical properties, with no observed exacerbation of side reactions. This work awakes the awareness of the prudent utilization of sacrificial cathode additives and provides an effective strategy for harmless pre-lithiation via surface reconstructed sacrificial cathode additives.

4.
J Colloid Interface Sci ; 640: 373-382, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867934

RESUMO

Li-rich Mn-based layered oxides (LLOs) have emerged as one of the most promising cathode materials for the next-generation lithium-ion batteries (LIBs) because of their high energy density, high specific capacity, and environmental friendliness. These materials, however, have drawbacks such as capacity degradation, low initial coulombic efficiency (ICE), voltage decay, and poor rate performance due to irreversible oxygen release and structural deterioration during cycling. Herein, we present a facile method of triphenyl phosphate (TPP) surface treatment to create an integrated surface structure on LLOs that includes oxygen vacancies, Li3PO4, and carbon. When used for LIBs, the treated LLOs show an increased initial coulombic efficiency (ICE) of 83.6% and capacity retention of 84.2% at 1C after 200 cycles. It is suggested that the enhanced performance of the treated LLOs can be attributed to the synergetic functions of each component in the integrated surface, such as the oxygen vacancy and Li3PO4 being able to inhibit the evolution of oxygen and accelerate the transport of lithium ions, while the carbon layer can restrain undesirable interfacial side reactions and reduce the dissolution of transition metals. Furthermore, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) prove an enhanced kinetic property of the treated LLOs cathode, and ex-situ X-ray diffractometer shows a suppressed structural transformation of TPP-treated LLOs during the battery reaction. This study provides an effective strategy for constructing an integrated surface structure on LLOs to achieve high-energy cathode materials in LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...