Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(3): 1336-1350, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617527

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is a common and deadly tumor. Currently, there is a severe lack of therapeutic options. As a novel mode of cell death, increasing evidence reveals the important role of the disulfidptosis in cancer. However, few studies have utilized disulfidptosis-related long-stranded non-coding RNAs (DRlncRNAs) to investigate the prognosis of PAAD. Methods: We comprehensively analyzed the expression and prognostic value of 958 DRlncRNAs in PAAD using data from The Cancer Genome Atlas (TCGA). We established and validated a new DRlncRNAs-related prognostic index by least absolute shrinkage and selection operator (LASSO) and COX regression analysis. In addition, we built a nomogram consisting of risk score, age, gender, tumor grade and stage to validate the clinical feasibility of the index. We further evaluated the value of the index in terms of PAAD functional pathways, tumor microenvironment (TME) and tumor mutations. Results: We designed a risk model for five DRlncRNAs and demonstrated its accuracy using receiver operating characteristic (ROC) curves. COX regression suggested that the model may be an independent predictor of cancer prognosis. Tumor immune infiltration analysis revealed that low-risk subgroups had higher extent of immune infiltration, higher sensitivity to immunotherapy and a higher TME score. This is helpful for us to discover more precise immunotherapy for PAAD patients. Conclusions: In conclusion, we established a DRlncRNA index comprising of five DRlncRNAs, which may provide new insights for clinical diagnosis and precision therapy.

2.
Adv Healthc Mater ; 13(4): e2302485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902093

RESUMO

The use of oxidoreductase nanozymes to regulate reactive oxygen species (ROS) has gradually emerged in periodontology treatments. However, current nanozymes for treating periodontitis eliminate ROS extensively and non-specifically, ignoring the physiological functions of ROS under normal conditions, which may result in uncontrolled side effects. Herein, using the MIL-47(V)-F (MVF) nanozyme, which mimics the function of glutathione peroxidase (GPx), it is proposed that ROS can be properly regulated by specifically eliminating H2 O2 , the most prominent ROS. Through H2 O2 elimination, MVF contributes to limiting inflammation, regulating immune microenvironment, and promoting periodontal regeneration. Moreover, MVF stimulates osteogenic differentiation of periodontal stem cells directly, further promoting regeneration due to the vanadium in MVF. Mechanistically, MVF regulates ROS by activating the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promotes osteogenic differentiation directly through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. A promising periodontitis therapy strategy is presented using GPx-mimicking nanozymes through their triple effects of antioxidation, immunomodulation, and bone remodeling regulation, making nanozymes an excellent tool for developing precision medicine.


Assuntos
Periodontite , Transdução de Sinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Osteogênese , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Regeneração Óssea , Periodontite/tratamento farmacológico
3.
Environ Sci Pollut Res Int ; 26(22): 22351-22361, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154651

RESUMO

A new method was developed for denitrification and desulfurization using hydrogen peroxide with the aid of an ultrasonic nebulizer to obtain high removal efficiency of NOx and SO2. Comparing with the atomizing nozzles having the aperture size of 0.01~0.02 mm, the droplets generated using the ultrasonic nebulizer show the smallest d50 value of 7.2 µm, with 72% possessing the size less than 10 µm. Based on the numerical simulation of the vaporization rate of droplets, it is indicated that the droplets with the size of 7.2 µm can be vaporized totally at very short residence time (0.11 s) under 130 °C. Effects of influence factors including the reaction temperature, the initial H2O2 concentration, pH value, and the flue gas flow rate were studied on the removal efficiencies of NO and SO2. Using the in-series double-oxidation subsystems with H2O2 concentration of 6 wt%, pH 5.0, and the reaction temperature of 130 °C, the removal efficiencies of SO2 and NO are respectively 100% and 89.3% at the short residence time of 1.8 s, and the removal efficiency of NO can be increased to 100% as the residence time is longer than 3.7 s. It is confirmed that the ultrasonically atomized H2O2 can indeed enhance the removal efficiencies of NO and SO2 at the optimal temperature, owing to the fast vaporization rate of fine droplets as well as the formation of more active radicals to be captured by NO and SO2 simultaneously. The results here provide a promising route to remove effectively the emissions of NO and SO2 simultaneously. Graphical abstract.


Assuntos
Peróxido de Hidrogênio/química , Óxidos de Nitrogênio/química , Dióxido de Enxofre/química , Desnitrificação , Nebulizadores e Vaporizadores , Oxirredução , Temperatura , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...