Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 15(1): 111, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242043

RESUMO

BACKGROUND: As one of the most important staple food crops, rice produces large of agronomic biomass residues that contain lots of secondary cell walls (SCWs). Membrane trafficking plays key roles in SCWs biosynthesis, but information association membrane trafficking and SCWs formation in plants is limited. RESULTS: In this study, we report the function characterization of a rice mutant, culm easily fragile 3 (cef3), that exhibits growth retardation and fragile culm phenotype with significantly altered cell wall composition and reduced secondary wall thickness. Map-based cloning revealed that CEF3 encodes a homologous protein of Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). The saccharification assays revealed that CEF3 mutation can improve biomass enzymatic saccharification. Expression pattern analysis indicated that CEF3 is ubiquitously expressed in many organs at different developmental stages. Subcellular localization revealed that CEF3 is a Golgi-localized protein. The FM4-64 uptake assay revealed CEF3 is involved in endocytosis. Furthermore, mutation of CEF3 not only affected cellulose synthesis-related genes expression, but also altered the abundance of cellulose synthase catalytic subunit 9 (OsCESA9) in the PM and in the endomembrane systems. CONCLUSIONS: This study has demonstrated that CEF3 participates in the membrane trafficking that is essential for normal cellulose and other polysaccharides biosynthesis of the secondary cell wall, thereby manipulation of CEF3 could alter cellulose content and enhance biomass enzymatic saccharification in rice plants. Therefore, the study of the function of CEF3 can provide a strategy for genetic modification of SCWs in bioenergy crops.

2.
Front Plant Sci ; 13: 997624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176686

RESUMO

Grain weight is a major determinant in rice yield, which is tightly associated with grain size. However, the underlying molecular mechanisms that control this trait remain unclear. Here, we report a rice (Oryza sativa) mutant, low grain weight (lgw), which shows that reduced grain length is caused by decreased cell elongation and proliferation. Map-based cloning revealed that all mutant phenotypes resulted from a nine-base pair (bp) deletion in LGW, which encodes the kinesin-like protein BRITTLE CULM12 (BC12). Protein sequence alignment analysis revealed that the mutation site was located at the nuclear localization signal (NLS) of LGW/BC12, resulting in the lgw protein not being located in the nucleus. LGW is preferentially expressed in both culms and roots, as well as in the early developing panicles. Overexpression of LGW increased the grain length, indicating that LGW is a positive regulator for regulating grain length. In addition, LGW/BC12 is directly bound to the promoter of GW7 and activates its expression. Elevating the GW7 expression levels in lgw plants rescued the small grain size phenotype. We conclude that LGW regulates grain development by directly binding to the GW7 promoter and activating its expression. Our findings revealed that LGW plays an important role in regulating grain size, and manipulation of this gene provides a new strategy for regulating grain weight in rice.

3.
Crit Rev Biotechnol ; 37(2): 218-228, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26810214

RESUMO

The objective of this review is to provide a concise summary of literature in the Chinese language since late 1970s and focuses on recent development in global scenarios. This work will replenish the FAO summary of water hyacinth utilization from 1917 to 1979 and review ecological and socioeconomic impacts of the water hyacinth from 1980 to 2010. This review also discusses the debate on whether the growth of the water hyacinth is a problem, a challenge or an opportunity. Literature suggested that integrated technologies and good management may be an effective solution and the perception of water hyacinth could change from that of a notorious aquatic weed to a valuable resource, including its utilization as a biological agent for the application in bioremediation for removing excess nutrients from eutrophic water bodies at low cost. Key aspects on system integration and innovation may focus on low-cost and efficient equipment and the creation of value-added goods from water hyacinth biomass. In the socioeconomic and ecological domain of global development, all the successful and sustainable management inputs for the water hyacinth must generate some sort of social and economic benefit simultaneously, as well as benefiting the ecosystem. Potential challenges exist in linkages between the management of water hyacinth on the large scale to the sustainable development of agriculture based on recycling nutrients, bio-energy production or silage and feed production. Further research and development may focus on more detailed biology of water hyacinth related with its utilization, cost-benefit analysis of middle to large-scale application of the technologies and innovation of the equipment used for harvesting and dehydrating the plant.


Assuntos
Eichhornia , Espécies Introduzidas , Controle de Plantas Daninhas/métodos , Animais , Ecossistema , Eichhornia/anatomia & histologia , Eichhornia/fisiologia , Fitoplâncton , Qualidade da Água
4.
Environ Sci Pollut Res Int ; 23(9): 8388-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26780060

RESUMO

An ecological engineering project with confined growth of 1.5 km(2) of Eichhornia crassipes was implemented to remove pollutants in Lake Dianchi. To assess the ecological effects of this project on benthic macroinvertebrate assemblages, a 1-year investigation at the areas inside and outside E. crassipes mats was conducted from May 2013 to May 2014. All the 10 sampling sites in the areas were grouped into two statistically significant clusters mainly corresponding to inside and outside E. crassipes mat areas (EMAs), by clustering analysis. E. crassipes reduced the densities of pollution indicator taxa (e.g., Oligochaeta and Chironomidae larvae); thus, the total densities of benthic macroinvertebrates at the area inside EMAs (mean 328.2 ind./m(2)) were slightly lower than that at the area outside EMAs (mean 505.6 ind./m(2)). Four functional feeding groups including 38 species of benthic macroinvertebrates were collected at the area inside EMAs, while only three functional feeding groups containing 17 species were collected at the area outside EMAs. The biodiversity indices (Shannon-Weiner, Margalef, Simpson, and Peilou indices) and K-dominance curves also showed higher diversity of benthic macroinvertebrates at the area inside EMAs than at the area outside EMAs. These results suggested that a certain scale of engineering application of E. crassipes was beneficial to benthic macroinvertebrate communities in the ultra-eutrophic Lake Dianchi and it could be used as a pioneer species in ultra-eutrophic lake for pollutant removal.


Assuntos
Biodiversidade , Eichhornia/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Invertebrados/classificação , Animais , China , Chironomidae , Eutrofização , Invertebrados/crescimento & desenvolvimento , Lagos/química
5.
Appl Environ Microbiol ; 81(19): 6601-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26162886

RESUMO

Three families of Bacillus cyclic lipopeptides--surfactins, iturins, and fengycins--have well-recognized potential uses in biotechnology and biopharmaceutical applications. This study outlines the isolation and characterization of locillomycins, a novel family of cyclic lipopeptides produced by Bacillus subtilis 916. Elucidation of the locillomycin structure revealed several molecular features not observed in other Bacillus lipopeptides, including a unique nonapeptide sequence and macrocyclization. Locillomycins are active against bacteria and viruses. Biochemical analysis and gene deletion studies have supported the assignment of a 38-kb gene cluster as the locillomycin biosynthetic gene cluster. Interestingly, this gene cluster encodes 4 proteins (LocA, LocB, LocC, and LocD) that form a hexamodular nonribosomal peptide synthetase to biosynthesize cyclic nonapeptides. Genome analysis and the chemical structures of the end products indicated that the biosynthetic pathway exhibits two distinct features: (i) a nonlinear hexamodular assembly line, with three modules in the middle utilized twice and the first and last two modules used only once and (ii) several domains that are skipped or optionally selected.


Assuntos
Bacillus subtilis/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Dados de Sequência Molecular , Família Multigênica , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Microbiologia do Solo
6.
J Environ Sci (China) ; 27: 217-24, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597680

RESUMO

The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al. (2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination (R(2)) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1, 2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area (%) in comparison with the averaged relative peak area of each method at 0 day. The indices of the bottle full of water method were the lowest (99.5%-108.5%) compared to the indices of vacuum bag and vacuum vial methods (119%-217%). Meanwhile, the gas chromatograph determination of other gas components (O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.


Assuntos
Cromatografia Gasosa , Monitoramento Ambiental/métodos , Nitrogênio/análise , Poluentes Químicos da Água/análise , Gases/análise
7.
Chemosphere ; 92(2): 177-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23582406

RESUMO

An ecological engineering project, with large-scale utilization of Eichhornia crassipes (coverage area ∼4.3km(2)) for pollution control in an open ultra-eutrophic lake, Lake Caohai, was first implemented in 2011. In this study, the efficiency of N removal using E. crassipes in the lake was evaluated. After E. crassipes was planted in May, the concentrations of TN and NH4(+) in Waicaohai, the main part of Lake Caohai, were significantly decreased within a month, and then, remained stable from June to November, 2011, although the lake had received waste water continuously from river inlets. The average concentrations of TN, NH4(+)-N and NO3(-)-N in water of Xi Yuan Channel (outlet) were reduced to 3.3, 0.02 and 0.8mgL(-1) from 13.8, 4.7 and 5.8mgL(-1) in river inlets, respectively. The DO levels in 2011 were not decreased, but concentrations of TN and NH4(+) were significantly reduced when compared with the historical data from 2007 in the lake. Assimilation by E. crassipes was the main pathway to remove N in Lake Caohai, accounted for 52% of the total N influent (936t), or 64% of the removed N (761t). These results indicated that large scale utilization of E. crassipes for removal of N in the eutrophic lake is practicable.


Assuntos
Eichhornia/crescimento & desenvolvimento , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Biomassa , China , Eichhornia/metabolismo , Eutrofização , Hidrobiologia , Lagos , Nitrogênio/isolamento & purificação , Compostos de Amônio Quaternário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...