Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Mycol ; 96: 17-140, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206137

RESUMO

Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.

2.
Mol Phylogenet Evol ; 20(1): 1-13, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11421644

RESUMO

The 5.8S gene and flanking internal transcribed spacers (ITS1 and ITS2) of the rDNA were amplified from total DNA extracted from frond tissues of Livistona chinensis with universal and fungal-specific primers. These amplified fragments were cloned and sequenced. Phylogenetic analysis based on the 5.8S gene sequences indicated that the six clone sequences obtained were of different origins. Five sequences, P1-9, P2-6, P4-4, P4-5, and P4-7, belonged to the fungi and one sequence, P3-2, belonged to the plants. P1-9 was inferred to belong to the Basidiomycota based on the phylogenetic analysis of the 5.8S gene sequences but could not be identified to lower taxonomic levels. Further identification of the other four fungal clones to lower taxonomic levels was attempted based on phylogenetic analysis and sequence comparison of both the conserved 5.8S gene and the variable ITS regions. The origin of P2-6 was identified to be Glomerella and its anamorph Colletotrichum, the origins of P4-5 and P4-7 were Mycosphaerella and its anamorph Cladosporium, and the origin of P4-4 was the Herpotrichiellaceae. The direct approach to detection and taxonomic placement of endophytic fungi within host tissue without the need for conventional in vitro culturing is discussed.


Assuntos
DNA Ribossômico/genética , Fungos/genética , Plantas/microbiologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Espaçador Ribossômico/genética , Fungos/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
3.
New Phytol ; 147(3): 617-630, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33862946

RESUMO

A survey of the endophytic fungi in fronds of Livistona chinensis was carried out in Hong Kong. The endophyte assemblages identified using morphological characters consisted of 16 named species and 19 'morphospecies', the latter grouped based on cultural morphology and growth rates. Arrangement of taxa into morphospecies does not reflect species phylogeny, and therefore selected morphospecies were further identified based on ribosomal DNA (rDNA) sequence analysis. The 5.8S gene and flanking internal transcribed spacers (ITS1 and ITS2) regions of rDNA from 19 representative morphospecies were amplified by the polymerase chain reaction and sequenced. Phylogenetic analysis based on 5.8S gene sequences showed that these morphospecies were filamentous Ascomycota, belonging in the Loculoascomycetes and Pyrenomycetes. Further identification was conducted by means of sequence comparison and phylogenetic analysis of both the ITS and 5.8S regions. Results showed that MS704 belonged to the genus Diaporthe and its anamorph Phomopsis of the Valsaceae. MS594 was inferred to be Mycosphaerella and its anamorph Cladosporium of the Mycosphaerellaceae. MS339, MS366, MS370, MS395, MS1033, MS1083 and MS1092 were placed in the genus Xylaria of the Xylariaceae. MS194, MS375 and MS1028 were close to the Clypeosphaeriaceae. MS191 and MS316 were closely related to the Pleosporaceae within the Dothideales. The other 5 morphospecies, MS786, MS1043, MS1065, MS1076 and MS1095, probably belong in the Xylariales. The value of using DNA sequence analysis in the identification of endophytes is discussed.

4.
Histochem Cell Biol ; 109(2): 103-9, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9504770

RESUMO

The immunohistochemical localization of calcitonin gene-related peptide was examined, at both light and electron microscopic levels, in the pancreas of various vertebrates, including the eel, bullfrog, turtle, chicken, mouse, rat, guinea pig, dog, monkey, and human. Immunoreactive staining was observed in nerve fibers in every animal species examined, but positive endocrine cells were limited to the rat, monkey, and human. The density of the positive endocrine cells varied considerably among the three species (monkey > rat > human). Positive nerve fibers were distributed throughout the parenchyma, being particularly rich around pancreatic ducts, and near large or small blood vessels. In four species (eel, mouse, rat, and dog), positive nerve fibers formed a dense network in the islet region. There were positive varicose nerve fibers around exocrine cells. These fibers, varying in density in different species (relatively high in the eel, bullfrog, and rat), were sometimes adjacent to acinar cells. At the electron microscopic level, positive nerve terminals were often demonstrated in close apposition to the outer membrane of acinar cells. The eel pancreas revealed an exceptional pattern of staining in neuronal cell bodies that were scattered in the interlobular connective tissue. Despite these anatomical differences, the omnipresence of this peptide suggests its essential role(s) in the pancreas.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Pâncreas/anatomia & histologia , Pâncreas/metabolismo , Animais , Galinhas , Cães , Enguias , Cobaias , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Macaca , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica , Fibras Nervosas/metabolismo , Pâncreas/inervação , Filogenia , Rana catesbeiana , Ratos , Ratos Wistar , Especificidade da Espécie , Tartarugas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...