Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
2.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923060

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Assuntos
Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Masculino , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
3.
J Am Chem Soc ; 146(25): 17189-17200, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864358

RESUMO

Spatial immobilization of fragile enzymes using a nanocarrier is an efficient means to design heterogeneous biocatalysts, presenting superior stability and recyclability to pristine enzymes. An immobilized enzyme, however, usually compromises its catalytic activity because of inevasible mass transfer issues and the unfavorable conformation changes in a confined environment. Here, we describe a synergetic metal-organic framework pore-engineering strategy to trap lipase (an important hydrolase), which confers lipase-boosted stability and activity simultaneously. The hierarchically porous NU-1003, featuring interconnected mesopore and micropore channels, is precisely modified by chain-adjustable fatty acids on its mesopore channel, into which lipase is trapped. The interconnected pore structure ensures efficient communication between trapped lipase and exterior media, while the fatty acid-mediated hydrophobic pore can activate the opening conformation of lipase by interfacial interaction. Such dual pore compartmentalization and hydrophobization activation effects render the catalytic center of trapped lipase highly accessible, resulting in 1.57-fold and 2.46-fold activities as native lipase on ester hydrolysis and enantioselective catalysis. In addition, the feasibility of these heterogeneous biocatalysts for kinetic resolution of enantiomer is also validated, showing much higher efficiency than native lipase.


Assuntos
Estabilidade Enzimática , Enzimas Imobilizadas , Interações Hidrofóbicas e Hidrofílicas , Lipase , Lipase/química , Lipase/metabolismo , Porosidade , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Hidrólise , Biocatálise
4.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761182

RESUMO

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Assuntos
Enterococcus faecalis , Fusobacterium nucleatum , Macrófagos , Estresse Fisiológico , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/genética , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Citocinas/metabolismo , Citocinas/genética , Aderência Bacteriana , Técnicas de Cocultura , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Inflamação
6.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735590

RESUMO

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Assuntos
Autofagia , Insuficiência Cardíaca , Inibidores de Histona Desacetilases , Isoproterenol , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Isoproterenol/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/tratamento farmacológico , Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Masculino , Ratos , Camundongos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fibrose , Células Cultivadas , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia
7.
Angew Chem Int Ed Engl ; 63(8): e202319876, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38183367

RESUMO

Utilizing covalent organic framework (COF) as a hypotoxic and porous scaffold to encapsulate enzyme (enzyme@COF) has inspired numerous interests at the intersection of chemistry, materials, and biological science. In this study, we report a convenient scheme for one-step, aqueous-phase synthesis of highly crystalline enzyme@COF biocatalysts. This facile approach relies on an ionic liquid (2 µL of imidazolium ionic liquid)-mediated dynamic polymerization mechanism, which can facilitate the in situ assembly of enzyme@COF under mild conditions. This green strategy is adaptive to synthesize different biocatalysts with highly crystalline COF "exoskeleton", as well evidenced by the low-dose cryo-EM and other characterizations. Attributing to the rigorous sieving effect of crystalline COF pore, the hosted lipase shows non-native selectivity for aliphatic acid hydrolysis. In addition, the highly crystalline linkage affords COF "exoskeleton" with higher photocatalytic activity for in situ production of H2 O2 , enabling us to construct a self-cascading photo-enzyme coupled reactor for pollutants degradation, with a 2.63-fold degradation rate as the poorly crystalline photo-enzyme reactor. This work showcases the great potentials of employing green and trace amounts of ionic liquid for one-step synthesis of crystalline enzyme@COF biocatalysts, and emphasizes the feasibility of diversifying enzyme functions by integrating the reticular chemistry of a COF.


Assuntos
Disciplinas das Ciências Biológicas , Líquidos Iônicos , Estruturas Metalorgânicas , Polimerização , Lipase
8.
Protein Pept Lett ; 30(12): 1038-1047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962044

RESUMO

BACKGROUND: Clinically, Fuzhengkangai formulation (FZKA) has been proven to have significant therapeutic effects on non-small lung cancer (NSCLC), although the mechanism is unknown. We aimed to explore the potential mechanism of FZKA in the treatment of NSCLC in this study. METHODS: We obtained the active components and targets of FZKA by TCMSP. The target genes of NSCLC were searched from OMIM, GEO (GSE18842), and GeneCards database. Cytoscape (3.7.2) software was used to construct a "drug-compound-cross-target interaction" interaction network, and the STING database was used to analyze previous cross-target interactions. Meanwhile, the results were visualized and processed by performing GO enrichment analysis and KEGG signaling pathway enrichment analysis at the target site. The core targets were docked with active components through AutoDockTools-1.5.6 software. Finally, we used cellular experiments to validate the bioinformatics predictions. RESULTS: There were 40 active and 465 potential genes from the TCMSP database. Key active chemicals, namely Quercetin, Kaempferol, Luteolin, and Tanshinone IIA, and 176 targets were deemed as targets of FZKA against NSCLC by PPI network analysis. GO and KEGG enrichment analyses suggest that FZKA acts primarily through the PI3K-AKT and MAPK signaling pathways in the treatment of NSCLC. Moreover, cellular assays showed that Quercetin, Kaempferol, Luteolin, and Tanshinone IIA not only reduced the viability of A549 cells and promoted apoptosis but also significantly decreased the p-AKT/AKT and p-ERK1/2/ERK1/2 ratios. CONCLUSION: Our data suggested that FZKA can be involved in the treatment of NSCLC through multiple components, targets and pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Quempferóis , Luteolina , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina
9.
Heliyon ; 9(10): e21087, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916111

RESUMO

Digital technologies are empowering economic and social development, which attracts scholars' attention to the relationship between digitalization and economic resilience, However, the empirical analysis for different countries and stages of development are inconsistent, and the influencing mechanism need to be further explored. Using panel data for 284 prefecture-level cities in China from 2007 to 2020, this study examines the impact of urban digital development on economic resilience. The findings are as follows: (1) The increased digitalization significantly enhances the urban economic resilience, and this effect was more pronounced in eastern regions and large-scale cities. (2) The relationship between digitalization and economic resilience follows an inverted U-shape as population density increases. (3) The spatial effects show that increased digitalization has a significant positive effect on local economic resilience, but weakens the resilience of the surrounding areas. (4) The analysis of mechanism reveals that the positive impact of digitalization on the urban economic resilience is mainly achieved by improving the quality of the regional labor force and total factor productivity. The study provides theoretical and empirical evidence for accelerating the digital construction, fully releasing the digital dividend in order to strengthen economic resilience.

10.
STAR Protoc ; 4(3): 102421, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432851

RESUMO

Enzyme immobilization into porous frameworks is an emerging strategy for enhancing the stability of dynamic conformation and prolonging the lifespan of enzymes. Here, we present a protocol for a de novo mechanochemistry-guided assembly strategy for enzyme encapsulation using covalent organic frameworks. We describe steps for mechanochemical synthesis, enzyme loading measurements, and material characterizations. We then detail evaluations of biocatalytic activity and recyclability. For complete details on the use and execution of this protocol, please refer to Gao et al. (2022).1.


Assuntos
Estruturas Metalorgânicas , Porosidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-37231719

RESUMO

INTRODUCTION: JAK3 kinase inhibitor has become an effective means to treat tumors and autoimmune diseases. METHOD: In this study, molecular docking and molecular dynamics simulation were used to study the theoretical interaction mechanism between 1-phenylimidazolidine-2-one molecules and JAK3 protein. RESULT: The results of molecular docking showed that the six 1-phenylimidazolidine-2-one derivatives obtained by virtual screening were bound to the ATP pocket of JAK3 kinase, which were competitive inhibitors of ATP, and were mainly bound to the pocket through hydrogen bonding and hydrophobic interaction. Further, MM/GBSA based on molecular dynamics simulation sampling was used to calculate the binding energy between six molecules and the JAK3 kinase protein. Subsequently, the binding energy was decomposed into the contribution of each amino acid residue, of which Leu905, Lys855, Asp967, Leu956, Tyr904, and Val836 were the main energy-contributing residues. Among them, the molecule numbered LCM01415405 can interact with the specific amino acid Arg911 of JAK3 kinase, suggesting that the molecule may be a selective JAK3 kinase inhibitor. The root-mean-square fluctuation (RMSF) of JAK3 kinase pocket residues during molecular dynamics simulation showed that the combination of six new potential small molecule inhibitors with JAK3 kinase could reduce the flexibility of JAK3 kinase pocket residues. CONCLUSION: These findings reveal the mechanism of 1-phenylimidazolidine-2-one derivatives on JAK3 protein and provide a relatively solid theoretical basis for the development and structural optimization of JAK3 protein inhibitors.

12.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098064

RESUMO

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incerteza , Surtos de Doenças/prevenção & controle , Saúde Pública , Pandemias/prevenção & controle
13.
Math Biosci Eng ; 20(2): 2261-2279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899533

RESUMO

With the deep integration of "AI + medicine", AI-assisted technology has been of great help to human beings in the medical field, especially in the area of predicting and diagnosing diseases based on big data, because it is faster and more accurate. However, concerns about data security seriously hinder data sharing among medical institutions. To fully exploit the value of medical data and realize data collaborative sharing, we developed a medical data security sharing scheme based on the C/S communication mode and constructed a federated learning architecture that uses homomorphic encryption technology to protect training parameters. Here, we chose the Paillier algorithm to realize the additive homomorphism to protect the training parameters. Clients do not need to share local data, but only upload the trained model parameters to the server. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible for issuing training commands and weights, aggregating the local model parameters from the clients and predicting the joint diagnostic results. The client mainly uses the stochastic gradient descent algorithm for gradient trimming, updating and transmitting the trained model parameters back to the server. In order to test the performance of this scheme, a series of experiments was conducted. From the simulation results, we can know that the model prediction accuracy is related to the global training rounds, learning rate, batch size, privacy budget parameters etc. The results show that this scheme realizes data sharing while protecting data privacy, completes the accurate prediction of diseases and has a good performance.


Assuntos
Algoritmos , Privacidade , Humanos , Segurança Computacional , Simulação por Computador , Big Data
14.
Foods ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231649

RESUMO

A 0.005% and 0.01% morin treatment was applied to treat mango fruits stored under ambient conditions (25 ± 1 °C) with 85-90% relative humidity, and the effects on quality indexes, enzyme activity related to antioxidation and cell wall degradation, and gene expressions involved in ripening and senescence were explored. The results indicate that a 0.01% morin application effectively delayed fruit softening and yellowing and sustained the nutritional quality. After 12 days of storage, the contents of soluble sugar and carotenoid in the treatment groups were 68.54 mg/g and 11.20 mg/100 g, respectively, lower than those in control, while the vitamin C content in the treatment groups was 0.58 mg/g, higher than that in control. Moreover, a morin application successively enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), but reduced the activity of polygalacturonase (PG) and pectin lyase (PL). Finally, real-time PCR and correlation analysis suggested that morin downregulated the ethylene biosynthesis (ACS and, ACO) and signal transduction (ETR1, ERS1, EIN2, and ERF1) genes, which is positively associated with softening enzymes (LOX, EXP, ßGal, and EG), carotenoid synthesis enzymes (PSY and, LCYB), sucrose phosphate synthase (SPS), and uncoupling protein (UCP) gene expressions. Therefore, a 0.01% morin treatment might efficiently retard mango fruit ripening and senescence to sustain external and nutritional quality through ethylene-related pathways, which indicates its preservation application.

15.
Heliyon ; 8(12): e12281, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578392

RESUMO

This paper examines the relationship between local venture capital (VC) funds and portfolio enterprise internationalization from the perspective of limited partners (LPs). Based on a sample consist of 581 listed enterprises invested by local VC funds in China during 2009-2021, it's found that, compared to the VC funds invested by local LPs completely (LLP_VC), the VC funds with foreign LP investment (FLP_VC) are more likely to help portfolio enterprises list overseas. If FLP_VC syndicates or act as a major investor, it will have a greater role in promoting the internationalization of enterprises.

16.
Exp Mol Med ; 54(11): 1940-1954, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369467

RESUMO

Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Glicólise/genética , Hipóxia/metabolismo , Neoplasias Pancreáticas
17.
J Pharm Sci ; 111(12): 3224-3231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202251

RESUMO

Gefitinib (GEF) is an anti-tumor oral solid formulation with a superior advantage for lung tumors. However, it has poor aqueous solubility which limits its utility in vivo. Herein, a novel cocrystal (GEF-RES) assembled by GEF and RES (Resveratrol) has been successfully prepared and comprehensively characterized by differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy and powder X-ray diffraction. A single-crystal structure of the GEF-RES cocrystal was solved and illustrated in detail. In aqueous hydrochloric acid, the GEF-RES cocrystal showed that the maximum concentration of GEF was slightly higher than that of raw GEF. Furthermore, the thermal and physical stability of the GEF-RES cocrystal were also evaluated in this paper. The enhanced solubility and excellent solid-state stability results may provide new potential to the application of key GEF in clinical.


Assuntos
Solubilidade , Resveratrol , Gefitinibe , Cristalização/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X , Difração de Pó
18.
J Periodontal Implant Sci ; 52(4): 282-297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36047582

RESUMO

PURPOSE: To explore differences in the subgingival microbiome according to the presence of periodontitis and/or type 2 diabetes mellitus (T2D), a metagenomic sequencing analysis of the subgingival microbiome was performed. METHODS: Twelve participants were divided into 4 groups based on their health conditions (periodontitis, T2D, T2D complicated with periodontitis, and generally healthy). Subgingival plaque was collected for metagenomic sequencing, and gingival crevicular fluids were collected to analyze the concentrations of short-chain fatty acids. RESULTS: The shifts in the subgingival flora from the healthy to periodontitis states were less prominent in T2D subjects than in subjects without T2D. The pentose and glucuronate interconversion, fructose and mannose metabolism, and galactose metabolism pathways were enriched in the periodontitis state, while the phosphotransferase system, lipopolysaccharide (LPS) and peptidoglycan biosynthesis, bacterial secretion system, sulfur metabolism, and glycolysis pathways were enriched in the T2D state. Multiple genes whose expression was upregulated from the red and orange complex bacterial genomes were associated with bacterial biofilm formation and pathogenicity. The concentrations of propionic acid and butyric acid were significantly higher in subjects with periodontitis, with or without T2D, than in healthy subjects. CONCLUSIONS: T2D patients are more susceptible to the presence of periodontal pathogens and have a higher risk of developing periodontitis. The pentose and glucuronate interconversion, fructose and mannose metabolism, galactose metabolism, and glycolysis pathways may represent the potential microbial functional association between periodontitis and T2D, and butyric acid may play an important role in the interaction between these 2 diseases. The enrichment of the LPS and peptidoglycan biosynthesis, bacterial secretion system, and sulfur metabolism pathways may cause T2D patients to be more susceptible to periodontitis.

19.
Front Psychol ; 13: 921168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936306

RESUMO

In recent years, venture capital (VC) cross-border syndication has shown an obvious growth trend. Based on the existing studies, this paper explores the impact of VC cross-border syndication on corporate innovation. We also examine the mediating roles of cross-border quadratic relationship closure (CBQRC) formed by the strategic cooperation relationship between the respective portfolio companies of domestic and foreign VCs. This paper conducted an empirical analysis to test our hypotheses using a sample of first-round investments in domestic firms by domestic VC firms from 2014 to 2016. Results show that the more investment events of VC cross-border syndication or the more partners of VC cross-border syndication, the more likely it is to have a significant positive impact on the innovation of domestic portfolio companies. CBQRC plays a mediating role between VC cross-border syndication on corporate innovation. Results remain robust after removing endogeneity using the instrumental variables approach and removing sample selection bias using Heckman two-stage regression. Results deepen the understanding of the relationship between VC cross-border syndication and corporate innovation and provide essential guidance to domestic VC firms promoting corporate innovation in open partnerships.

20.
Onco Targets Ther ; 15: 629-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35698606

RESUMO

Gallbladder cancer (GBC) is the most common type of biliary tract cancer. The GBC is often diagnosed at an advanced stage, which limits surgical intervention due to its aggressive nature, and as a consequence of its insensitivity to chemotherapy, more effective treatments are required. In GBC, the efficacy of chemotherapy combined with anti-PD-L1/VEGF inhibition remains to be clarified. The present case report describes successful treatment by toripalimab in combination with bevacizumab and gemcitabine in a patient with metastatic GBC and PD-L1 combined positive score (CPS) =30. After six courses of therapy, a partial response was observed in the patient's clinical condition. So far, her PFS has exceeded 15 months. To the best of our knowledge, there was no other case where toripalimab plus bevacizumab were used in combination with gemcitabine as an effective treatment strategy for GBC. The remarkable response is likely to be related to the positive expression of PD-L1. Further, VEGF inhibition in combination with chemotherapy may result in improved clinical outcomes due to increased antitumor immunity. Chemotherapy regimens combined with anti-PD-L1/VEGF inhibition are promising therapies for GBC. Further well-designed prospective clinical trials are needed in order to confirm the efficacy and safety of the three-drug regimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...