Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(1): 300-312, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38110303

RESUMO

In this study, we investigated the characteristics and herbicidal potential of bispyribac phenolic esters, which belong to the 2-(pyrimidin-2-yloxy)benzoic acid (PYB) class of acetohydroxyacid synthase (AHAS-)-inhibiting herbicides. These herbicides are primarily used for controlling Poaceae and broadleaf weeds. Among them, bispyribac-sodium stands out as a representative in this class. Surprisingly, other bispyribac esters, including alkanol and phenol esters exhibit considerably reduced herbicidal activity compared to bispyribac-sodium. In contrast, oxime esters (e.g., pyribenzoxim) demonstrate high activity. To further understand and develop novel PYB herbicides, we synthesized and screened a series of bispyribac phenolic esters while investigating their photochemical behaviors. Several compounds displayed excellent herbicidal activity, with compounds Ia-19 and Ic showing impressive 90% effective dosages for fresh weight inhibition of barnyard grass, measuring 0.55 and 0.60 g a.i./hm2, respectively. These values were approximately half of bispyribac-sodium or pyribenzoxim. The results indicate that the herbicidal activity of phenolic esters is influenced by both their binding ability to the AHAS enzyme and their decomposition into bispyribac acid. For instance, bispyribac phenol ester exhibited considerably reduced receptor affinity compared to bispyribac-sodium, and faced challenges in transforming into bispyribac acid, explaining its diminished herbicidal activity. However, introducing a photosensitive nitro group led to a complete transformation. This modification improved its affinity with AHAS and accelerated its decomposition into bispyribac acid, further accelerated by photocatalysis. Consequently, nitro-containing compounds displayed heightened herbicidal activity. The findings from this study open possibilities for structural optimization of phenolic esters through quantitative structure-activity relationship analysis, potentially regulating their activity-releasing period. Furthermore, the high activity of aromatic heterocyclic esters offers new insights into developing novel PYB herbicides.


Assuntos
Echinochloa , Herbicidas , Herbicidas/química , Ésteres , Fenóis , Relação Estrutura-Atividade
3.
Bioresour Technol ; 363: 127749, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940326

RESUMO

Anaerobic ammonium oxidation (Anammox) granular sludge (AnGS) has poor strength and is prone to disintegration under complex environmental conditions, especially in the presence of complex organic carbon, which renders the Anammox process instable. Herein, with a mixture of landfill leachate and domestic sewage as wastewater, the effect on the properties of AnGS with two small particle size (0.1-0.2 mm) biochars (coconut and peach biochars) addition were investigated at different COD concentrations (150 mg·L-1, 200 mg·L-1, and 250 mg·L-1), as well as at different BOD/TN (B/N) (0.3 and 0.5). Results showed that the nitrogen removal efficiencies decreased from 89 % to 72 % as the COD concentration increased by 100 mg·L-1, while peach biochar reactor had better nitrogen removal performance. Excessive organic carbon supply inhibits AnAOB proliferation and B/N had the most significant effect on AnAOB (p < 0.05). The Polymerase Chain Reaction (PCR) indicated peach biochar reactor get higher activity of anammox-related functional genes (hzsA, hdh).


Assuntos
Compostos de Amônio , Microbiota , Poluentes Químicos da Água , Anaerobiose , Reatores Biológicos , Carbono , Carvão Vegetal , Desnitrificação , Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
4.
Angew Chem Int Ed Engl ; 61(12): e202200261, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041240

RESUMO

It is of profound significance concerning the global energy and environmental crisis to develop new techniques that can reduce and convert CO2 . To address this challenge, we built a new type of artificial photoenzymatic system for CO2 reduction, using a rationally designed mesoporous olefin-linked covalent organic framework (COF) as the porous solid carrier for co-immobilizing formate dehydrogenase (FDH) and Rh-based electron mediator. By adjusting the incorporating content of the Rh electronic mediator, which facilitates the regeneration of nicotinamide cofactor (NADH) from NAD+ , the apparent quantum yield can reach as high as 9.17±0.44 %, surpassing all reported NADH-regenerated photocatalysts constructed by crystalline framework materials. Finally, the assembled photocatalyst-enzyme coupled system can selectively convert CO2 to formic acid with high efficiency and good reusability. This work demonstrates the first example using COFs to immobilize enzymes for artificial photosynthesis systems that utilize solar energy to produce value-added chemicals.


Assuntos
Estruturas Metalorgânicas , Alcenos , Dióxido de Carbono/química , Formiato Desidrogenases/química , Estruturas Metalorgânicas/química , NAD
5.
J Environ Sci (China) ; 115: 55-64, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969477

RESUMO

The effects of different chemical oxygen demand (COD) concentrations on the anammox granular sludge with Bamboo Charcoal (BC) addition were evaluated in UASB reactor. The results showed that the average total nitrogen (TN) removal efficiency was reduced from 85.9% to 81.4% when COD concentration was increased from 50 to 150 mg/L. However, the TN removal efficiency of BC addition reactors was dramatically 3.1%-6.4% higher than that without BC under different COD concentrations. The average diameter of granular sludge was 0.13 mm higher than that without BC. The settling velocity was increased by elevated COD concentration, while the EPS and VSS/SS were increased with BC addition. The high-throughput Miseq sequencing analyses revealed that the bacterial diversity and richness were decreased under COD addition, and the Planctomycetes related to anammox bacteria were Candidatus Brocadia and Candidatus Kuenenia. The Metagenomic sequencing indicated that the abundance of denitrification related functional genes all increased with elevated COD, while the abundance of anammox related functional genes of decreased. The functional genes related to anammox was hydrazine synthase encoding genes (hzsA, hzsB and hzsB). The average relative abundance of hzs genes in the reactor with BC addition was higher than the control at COD concentrations of 50 mg/L and 150 mg/L. The functional genes of denitrification mediated by BC were higher than those without BC throughout the operation phase. It is interesting to note that BC addition greatly enriched the related functional genes of denitrification and anammox.


Assuntos
Microbiota , Esgotos , Oxidação Anaeróbia da Amônia , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Carvão Vegetal , Desnitrificação , Nitrogênio , Oxirredução , Planctomicetos
6.
Huan Jing Ke Xue ; 41(5): 2358-2366, 2020 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608854

RESUMO

Anaerobic ammonium oxidation (ANAMMOX) granular sludge was cultured during different operating conditions by an expanded granular sludge bed (EGSB) reactor and up-flow anaerobic sludge bed (UASB) reactors, and the characteristics of the granular sludge and microbial community were compared. The results showed that the flocculent ANAMMOX sludge can be granulated after being operated for 384 days by the EGSB and UASB reactors. The average particle size reached 1.17 mm and 1.21 mm, respectively. The particle size ratio of each range (<0.2, 0.2-1.5, 1.5-3, and>3 mm) was 6.06%, 60.05%, 25.25%, and 8.64% in the EGSB reactor, and 7.40%, 58.90%, 32.04%, and 1.66% in the UASB reactor, respectively. The results of scanning electron microscopy showed that the bacterial flora during different operating conditions were mainly Brevibacterium and Cocci aggregates. High-throughput sequencing results showed that the Shannon index of the EGSB reactor was 7.52, higher than the 7.18 of the UASB reactor on day 384; Proteobacteria was the main phylum of the sludge at each stage, and Planctomycetes increased from 3.30% to 12.30% in the EGSB reactor and 13.30% in the UASB reactor on day 384. The main ANAMMOX genera in the EGSB reactor were Candidatus Brocadia, accounting for 7.53%, followed by Candidatus Kuenenia accounting for 1.61%, whereas in the UASB reactor, Candidatus Kuenenia was the dominant anaerobic ammonia genus, accounting for 7.54%, followed by Candidatus Brocadia, which accounted for 3.69%. The proportion of dominant species was related to the change in environmental factors. The proportion of Candidatus Brocadia was positively correlated with the up-flow rate and nitrogen removal rate (NRR), but negatively correlated with hydraulic retention time (HRT). Candidatus Kuenenia was positively correlated with nitrogen removal efficiency (NRE), NRR, and HRT, but negatively correlated with the up-flow rate.

7.
Huan Jing Ke Xue ; 41(1): 330-336, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854934

RESUMO

This study uses three different operating phases for a sequencing batch reactor (SBR) combined with an anaerobic baffled reactor (ABR) to determine the effect of deep nitrogen and carbon removal by the "partial nitrification-anaerobic ammonium oxidation combined denitrification" (termed PN-SAD) reaction. The effluent of the SBR (NO2--N/NH4+-N ratio range of 1-1.32) was accessed directly to the single compartment ABR anammox system in phase Ⅰ. The results showed that although the anammox reaction was stable, the combined process total nitrogen (TN) removal efficiency was<80%, and the TN concentration of effluent was~20 mg·L-1. In order to increase the denitrification function in the ABR, denitrifying sludge was added to the third compartment of the ABR in phase Ⅱ. We found that the TN removal efficiency of the coupling reaction was still low. An organic carbon source should be supplied in the latter stage of anammox if deep nitrogen removal is required. Therefore, in phase Ⅲ, the effluent of the SBR (NO2--N/NH4+-N ratio of ~5) was mixed with the partial raw water (mixed water NO2--N/NH4+-N ratio of ~1.4; C/N ratio of 2.5). The mixed water was connected to the single compartment of the ABR. The PN-SAD system not only achieved a good matrix ratio at the anammox stage, but also provided a good carbon source for denitrification. The chemical oxygen demand (COD) concentration of the effluent in the whole process was 50 mg·L-1, the TN concentration of the effluent was<6 mg·L-1, and the TN removal efficiency was 95%. We conclude that the stable operation of the combined PN-SAD reaction provides the basis for deep nitrogen and carbon removal using the combined SBR-ABR process.

8.
Huan Jing Ke Xue ; 40(2): 845-852, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628352

RESUMO

pH is one of the most important means of control for the realization and stability of the nitrosation system. To study the change rule of pH values of the nitrosation system and the influence of pollution removal and transformation at different pH under the conditions of different C/N (0, 1, 2, 3,4) and sludge concentrations (sludge amount:water content was 1:6, 1:3, 1:1), batch tests were conducted with tapered bottles using sodium acetate as the carbon source and inoculated with mature nitrosation sludge. The results showed that the higher the C/N, the higher the pH increment and the denitrification efficiency at the same sludge concentration. At the same C/N, a higher sludge concentration corresponded to a smaller pH increment but a higher denitrification efficiency. The removal and transformation of carbon and nitrogen was highly correlated with pH changes in the reaction system, and the denitrification and nitrosation reactions were in sequence. Throughout the operational period of the system, as pH increased, the specific organic matter removal rate was 7-16 times as much as when pH decreased. However, as pH decreased, the specific ammonia oxidation rate (SAOR) was 1-20 times that of when pH increased. When pH was less than 6.1, the system lost its ability to oxidize ammonia-nitrogen. The highest removal efficiency of carbon and nitrogen in the system was achieved when C/N was 4. Ammonia transformation 80% COD removal at the three sludge concentrations took 480, 350, and 300 min, respectively. Under different conditions, the proportion of nitrosation in the system remained above 50% and the concentration of NO3--N remained below 5 mg·L-1, which indicated that the system was dominated by nitrosation.


Assuntos
Reatores Biológicos , Nitrosação , Esgotos , Eliminação de Resíduos Líquidos , Carbono , Desnitrificação , Concentração de Íons de Hidrogênio , Nitrogênio
9.
Bioresour Bioprocess ; 3(1): 47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867835

RESUMO

BACKGROUND: Pichia pastoris is a popular recombinant protein expression system for its accessibility of efficient gene manipulation and high protein production. Sufficient supply of precursors, energy, and redox cofactors is crucial for high recombinant protein production. In our present work, we found that the addition of glutamate improved the recombinant ß-galactosidase (ß-gal) production by P. pastoris G1HL. METHODS: To elucidate the impacts of glutamate on the central metabolism in detail, a combined 13C-assisted metabolomics and 13C metabolic flux analysis was conducted based on LC-MS/MS and GC-MS data. RESULTS: The pool sizes of intracellular amino acids were obviously higher on glucose/glutamate (Glc/Glu). The fluxes in EMP entry reaction and in downstream TCA cycle were 50 and 67% higher on Glc/Glu than on Glc, respectively. While the fluxes in upstream TCA cycle kept almost unaltered, the fluxes in PPP oxidative branch decreased. CONCLUSION: The addition of glutamate leads to a remarkable change on the central metabolism of high ß-galactosidase-producing P. pastoris G1HL. To meet the increased demands of redox cofactors and energy for higher ß-galactosidase production on Glc/Glu, P. pastoris G1HL redistributes the fluxes in central metabolism through the inhibitions and/or activation of the enzymes in key nodes together with the energy and redox status.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...