Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 15(9): 1506-1522, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30806153

RESUMO

Aberrant CTNNB1 signaling is one of the fundamental processes in cancers, especially colorectal cancer (CRC). Here, we reported that TRAF6, an E3 ubiquitin ligase important for inflammatory signaling, inhibited epithelial-mesenchymal transition (EMT) and CRC metastasis through driving a selective autophagic CTNNB1 degradation machinery. Mechanistically, TRAF6 interacted with MAP1LC3B/LC3B through its LC3-interacting region 'YxxL' and catalyzed K63-linked polyubiquitination of LC3B. The K63-linked ubiquitination of LC3B promoted the formation of the LC3B-ATG7 complex and was critical to the subsequent recognition of CTNNB1 by LC3B for the selective autophagic degradation. However, TRAF6 was phosphorylated at Thr266 by GSK3B in most clinical CRC, which triggered K48-linked polyubiquitination and degradation of TRAF6 and thereby attenuated its inhibitory activity towards the autophagy-dependent CTNNB1 signaling. Clinically, decreased expression of TRAF6 was associated with elevated GSK3B protein levels and activity and reduced overall survival in CRC patients. Pharmacological inhibition of GSK3B activity stabilized the TRAF6 protein, promoted CTNNB1 degradation, and effectively suppressed EMT and CRC metastasis. Thus, targeting TRAF6 and its pathway may be meaningful for treating advanced CRC. Abbreviations: AMBRA1: autophagy and beclin 1 regulator 1; AOM: azoxymethane; ATG5: autophagy related 5; ATG7: autophagy related 7; Baf A1: bafilomycin A1; BECN1: beclin 1; CoIP: co-immunoprecipitation; CQ: chloroquine; CRC: colorectal cancer; CTNNB1/ß-catenin: catenin beta 1; DSS: dextran sodium sulfate; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; GFP: green fluorescent protein; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; IgG: Immunoglobulin G; IHC: immunohistochemistry; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RFP: red fluorescent protein; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TRAF6: TNF receptor-associated factor 6; WT: wild-type; ZEB1: zinc finger E-box binding homeobox 1.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos/genética , Animais , Autofagossomos/ultraestrutura , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Transplante Heterólogo , Ubiquitinação/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , beta Catenina/genética
2.
Onco Targets Ther ; 11: 7635-7642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464512

RESUMO

BACKGROUND: (PD-L2), a ligand of programmed cell death protein 1 (PD-1), is an inhibitory receptor of T cells and activated B cells. Many studies have focused on PD-L1, another ligand of PD-1, and the prognostic significance of PD-L1 has been reported in many tumors. However, the expression of PD-L2 in relation to clinical outcomes has not been fully investigated in cancer patients. PATIENTS AND METHODS: In this study, we investigated the expression of PD-L2 via immunohistochemistry (IHC) in the pathological specimens of 348 patients treated for colorectal cancer (CRC). RESULTS: Strong PD-L2 expression was found in the cancer tissues from 41% of the CRC patients who also had a high TNM stage and carcinoembryonic antigen (CEA) concentration. We also carried out functional studies in vitro, which showed that PD-L2 did not influence the growth of the CRC cell line HCT116, but increased cell invasion. CONCLUSION: Collectively, these findings suggest that PD-L2 may be a potential therapeutic target for CRC.

3.
J Hematol Oncol ; 11(1): 95, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016968

RESUMO

BACKGROUND: Ubiquitination is a basic post-translational modification for cellular homeostasis, and members of the conjugating enzyme (E2) family are the key components of the ubiquitin-proteasome system. However, the role of E2 family in colorectal cancer (CRC) is largely unknown. Our study aimed to investigate the role of Ube2v1, one of the ubiquitin-conjugating E2 enzyme variant proteins (Ube2v) but without the conserved cysteine residue required for the catalytic activity of E2s, in CRC. METHODS: Immunohistochemistry and real-time RT-PCR were used to study the expressions of Ube2v1 at protein and mRNA levels in CRC, respectively. Western blotting and immunofluorescence, transmission electron microscopy, and in vivo rescue experiments were used to study the functional effects of Ube2v1 on autophagy and EMT program. Quantitative mass spectrometry, immunoprecipitation, ubiquitination assay, western blotting, and real-time RT-PCR were used to analyze the effects of Ube2v1 on histone H4 lysine 16 acetylation, interaction with Sirt1, ubiquitination of Sirt1, and autophagy-related gene expression. RESULTS: Ube2v1 was elevated in CRC samples, and its increased expression was correlated with poorer survival of CRC patients. Ube2v1 promoted migration and invasion of CRC cells in vitro and tumor growth and metastasis of CRC cells in vivo. Interestingly, Ube2v1suppressed autophagy program and promoted epithelial mesenchymal transition (EMT) and metastasis of CRC cells in an autophagy-dependent pattern in vitro and in vivo. Moreover, both rapamycin and trehalose attenuated the enhanced Ube2v1-mediated lung metastasis by inducing the autophagy pathway in an orthotropic mouse xenograft model of lung metastasis. Mechanistically, Ube2v1 promoted Ubc13-mediated ubiquitination and degradation of Sirt1 and inhibited histone H4 lysine 16 acetylation, and finally epigenetically suppressed autophagy gene expression in CRC. CONCLUSIONS: Our study functionally links Ube2v1, an E2 member in the ubiquitin-proteasome system, to autophagy program, thereby shedding light on developing Ube2v1 targeted therapy for CRC patients.


Assuntos
Neoplasias Colorretais/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Autofagia/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Ubiquitinação
4.
J Hepatol ; 66(6): 1193-1204, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28192186

RESUMO

BACKGROUND & AIMS: Aberrant estrogen receptor-α (ERα) expression and signaling are implicated in the development of hepatocellular carcinoma (HCC), but its regulation in HCC remains enigmatic. Herein, we aimed to identify a new mechanism by which ERα signaling is regulated in HCC, which may lead to a potential new strategy for HCC therapy. METHODS: Expression levels of Erbin and ERα in human HCC samples were evaluated by immunohistochemistry. In vitro and in vivo experiments were used to assess the effect of Erbin and ERα signaling on HCC cell growth. Crosstalk between Erbin and ERα signaling was analyzed by molecular methods. Animal models of diethylnitrosamine (DEN) or DEN/CCl4-induced HCC in wild-type Erbin+/+ and mutant ErbinΔC/ΔC mice were observed. The regulatory effects of Erbin on tamoxifen treatment of HCC were evaluated in vitro and in vivo. RESULTS: Erbin inactivated ERα signaling to drive tumorigenesis of HCC, acting to enhance binding of Chip to ERα via its interaction with ERα and thereby promoting ubiquitination and degradation of ERα. Deletion of the PDZ domain of Erbin in ErbinΔC/ΔC mice, disrupted the interaction of Chip and ERα, increased the stability of ERα protein, and thus inhibited tumorigenesis of HCC. Silencing of Erbin effectively sensitized the response of HCC after tamoxifen treatment in vitro and in vivo. CONCLUSIONS: Our data uncovered an important role of Erbin in regulating HCC tumorigenesis through inactivating ERα-mediated tumor-suppressive signaling, suggesting a new strategy for tamoxifen therapy in HCC by targeting Erbin/ERα signaling axis. LAY SUMMARY: Erbin expression is significantly elevated in human hepatocellular carcinoma (HCC) tissue. This elevated expression of Erbin contributes to tumorigenesis of HCC by negatively regulating ERα signaling. However, restoring ERα signaling by inhibiting Erbin expression enhances the sensitivity of HCC cells to tamoxifen treatment, providing a new approach for tamoxifen treatment in HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos Hormonais/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Estabilidade Proteica , Fatores Sexuais , Tamoxifeno/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima
5.
J Exp Clin Cancer Res ; 35(1): 164, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756432

RESUMO

BACKGROUND: Aberrant expression of Retinoic acid receptor γ (RARγ) is implicated in cancer development. Our previous study identified that RARγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its contribution to HCC invasion and metastasis remains unclear. METHODS: RARγ expression in clinical HCC samples was detected by western blot and immunohistochemistry. The relationship between RARγ expression levels and the clinical characteristics were evaluated. HCC cell line MHCC-97H were stably knocked down RARγ using a lentivirus vector-based shRNA technique. The cells were analyzed by migration and invasion assays, and injected into nude mice to assess tumor metastasis. E-cadherin expression regulated by RARγ was examined by qPCR, western blot and immunofluorescence staining. RESULTS: The expression of RARγ is significantly upregulated in human HCC tissues. Moreover, its expression positively correlates with tumor size, distant metastasis and TNM stage, and negatively correlates with length of survival of HCC patients. Knockdown of RARγ markedly inhibits HCC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations reveal that RARγ functions through regulation of NF-κB-mediated E-cadherin downregulation to promote HCC invasion and metastasis. Notably, RARγ expression status negatively correlates with E-cadherin expression in HCC cell lines and clinical HCC samples. CONCLUSIONS: These findings demonstrate that RARγ could promote HCC invasion and metastasis by regulating E-cadherin reduction, and implicate new strategies to aggressively treat HCC through targeting RARγ/E-cadherin signaling axis.


Assuntos
Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Regulação para Baixo , Neoplasias Hepáticas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Animais , Antígenos CD , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Regulação para Cima , Receptor gama de Ácido Retinoico
6.
Cancer Res ; 76(13): 3813-25, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325643

RESUMO

The Hippo-Yap pathway conveys oncogenic signals, but its regulation during cancer development is not well understood. Here, we identify the nuclear receptor RARγ as a regulator of the Hippo-Yap pathway in colorectal tumorigenesis and metastasis. RARγ is downregulated in human colorectal cancer tissues, where its expression correlates inversely with tumor size, TNM stage, and distant metastasis. Functional studies established that silencing of RARγ drove colorectal cancer cell growth, invasion, and metastatic properties both in vitro and in vivo Mechanistically, RARγ controlled Hippo-Yap signaling to inhibit colorectal cancer development, acting to promote phosphorylation and binding of Lats1 to its transcriptional coactivator Yap and thereby inactivating Yap target gene expression. In clinical specimens, RARγ expression correlated with overall survival outcomes and expression of critical Hippo-Yap pathway effector molecules in colorectal cancer patients. Collectively, our results defined RARγ as tumor suppressor in colorectal cancer that acts by restricting oncogenic signaling by the Hippo-Yap pathway, with potential implications for new approaches to colorectal cancer therapy. Cancer Res; 76(13); 3813-25. ©2016 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Western Blotting , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Via de Sinalização Hippo , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Estadiamento de Neoplasias , Fosfoproteínas/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Fatores de Transcrição , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Receptor gama de Ácido Retinoico
7.
J Inflamm (Lond) ; 13: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839514

RESUMO

BACKGROUND: Nur77, a key member of the NR4A receptor subfamily, is involved in the regulation of inflammation and immunity. However, the in vivo regulatory roles of Nur77 in sepsis and the mechanisms involved remains largely elusive. In this study, we used Nur77-deficient (Nur77(-/-)) mice and investigated the function of Nur77 in sepsis. FINDINGS: Compared to wild-type (Nur77(+/+)) mice, Nur77(-/-) mice are more susceptible to LPS-induced sepsis and acute liver inflammation. Mechanistically, we observed that Nur77 can interact with TRAF6, a crucial adaptor molecule in the Toll-like receptor-interleukin 1 receptor (TLR-IL-1R) signalling pathway, in in vivo mouse model of sepsis. The interaction may affect TRAF6 auto-ubiquitination, thereby inhibiting NF-κB activation and pro-inflammatory cytokines production. CONCLUSIONS: These in vivo observations reveals an important protective role for Nur77 in LPS-induced sepsis through its regulation to TRAF6 signalling, and highlights the potential clinical application of Nur77 as a molecular target in prevention and/or treatment of sepsis.

8.
Cancer Res ; 76(1): 83-95, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26669864

RESUMO

Ubiquitin specific protease 4 (USP4) is a deubiquitinating enzyme with key roles in the regulation of p53 and TGFß signaling, suggesting its importance in tumorigenesis. However, the mechanisms and regulatory roles of USP4 in cancer, including colorectal cancer, remain largely elusive. Here, we present the first evidence that USP4 regulates the growth, invasion, and metastasis of colorectal cancer. USP4 expression was significantly elevated in colorectal cancer tissues and was significantly associated with tumor size, differentiation, distant metastasis, and poor survival. Knockdown of USP4 diminished colorectal cancer cell growth, colony formation, migration, and invasion in vitro and metastasis in vivo. Importantly, we found that phosphatase of regenerating liver-3 (PRL-3) is indispensable for USP4-mediated oncogenic activity in colorectal cancer. Mechanistically, we observed that USP4 interacted with and stabilized PRL-3 via deubiquitination. This resulted in activation of Akt and reduction of E-cadherin, critical regulators of cancer cell growth and metastasis. Examination of clinical samples confirmed that USP4 expression positively correlates with PRL-3 protein expression, but not mRNA transcript levels. Taken together, our results demonstrate that aberrant expression of USP4 contributes to the development and progression of colorectal cancer and reveal a critical mechanism underlying USP4-mediated oncogenic activity. These observations suggest that the potential of harnessing proteolytic degradation processes for therapeutic manipulation may offer a much-needed new approach for improving colorectal cancer treatment strategies.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células CACO-2 , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Células HCT116 , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais , Proteases Específicas de Ubiquitina , Ubiquitinação
9.
J Inflamm (Lond) ; 12: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113803

RESUMO

BACKGROUND: Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. FINDINGS: We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. CONCLUSIONS: These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...