Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 30(2): 501-516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35900899

RESUMO

Premating behaviors mediated by pheromones play pivotal roles in animal mating choices. In natural populations of the striped stem borer Chilo suppressalis and the rice leaf roller Cnaphalocrocis medinalis in the rice field habitat, we discovered that Z11-16:Ald, a major component of the C. suppressalis pheromone, modulated the premating behavior of C. medinalis. Z11-16:Ald evoked a strong olfactory response in male antennae and strongly inhibited the sex pheromone trapping of male C. medinalis in the field. The functions of three C. medinalis sex pheromone receptor genes (CmedPR1-3) were verified through heterologous expression in Xenopus oocytes. CmedPR1 responded to Z11-18:OH and Z11-18:Ald, as well as the interspecific pheromone compound Z11-16:Ac of sympatric species; CmedPR2 responded to Z13-18:OH and Z13-18:Ald, as well as the sex pheromone compounds Z11-16:Ald and Z9-16:Ald of sympatric species; and CmedPR3 responded to Z11-18:OH and Z13-18:OH, as well as the interspecific pheromones Z11-16:OH, Z9-16:Ald, Z11-16:Ac, and Z11-16:Ald of sympatric species. Thus, CmedPR2 and CmedPR3 share the ligand Z11-16:Ald, which is not a component of the C. medinalis sex pheromone. Therefore, the sex pheromones of interspecific species affected the input of neural signals by stimulating the sex pheromone receptors on the antennae of male C. medinalis moths, thereby inhibiting the olfactory responses of the male moths to the sex pheromones. Our results demonstrate chemical communication among sympatric species in the rice field habitat, the recognition of intra- and interspecific sex pheromones by olfactory receptors, and how insect premating behaviors are modulated to possibly affect resource partitioning.


Assuntos
Mariposas , Atrativos Sexuais , Masculino , Animais , Mariposas/fisiologia , Atrativos Sexuais/farmacologia , Simpatria , Feromônios , Ecologia , Demografia
2.
PLoS One ; 12(6): e0179433, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28614384

RESUMO

The piercing fruit moth Oraesia emarginata is an economically significant pest; however, our understanding of its olfactory mechanisms in infestation is limited. The present study conducted antennal transcriptome analysis of olfactory genes using real-time quantitative reverse transcription PCR analysis (RT-qPCR). We identified a total of 104 candidate chemosensory genes from several gene families, including 35 olfactory receptors (ORs), 41 odorant-binding proteins, 20 chemosensory proteins, 6 ionotropic receptors, and 2 sensory neuron membrane proteins. Seven candidate pheromone receptors (PRs) and 3 candidate pheromone-binding proteins (PBPs) for sex pheromone recognition were found. OemaOR29 and OemaPBP1 had the highest fragments per kb per million fragments (FPKM) values in all ORs and OBPs, respectively. Eighteen olfactory genes were upregulated in females, including 5 candidate PRs, and 20 olfactory genes were upregulated in males, including 2 candidate PRs (OemaOR29 and 4) and 2 PBPs (OemaPBP1 and 3). These genes may have roles in mediating sex-specific behaviors. Most candidate olfactory genes of sex pheromone recognition (except OemaOR29 and OemaPBP3) in O. emarginata were not clustered with those of studied noctuid species (type I pheromone). In addition, OemaOR29 was belonged to cluster PRIII, which comprise proteins that recognize type II pheromones instead of type I pheromones. The structure and function of olfactory genes that encode sex pheromones in O. emarginata might thus differ from those of other studied noctuids. The findings of the present study may help explain the molecular mechanism underlying olfaction and the evolution of olfactory genes encoding sex pheromones in O. emarginata.


Assuntos
Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Mariposas/genética , Sequência de Aminoácidos , Animais , Feminino , Ontologia Genética , Proteínas de Insetos/classificação , Masculino , Córtex Olfatório/metabolismo , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Receptores de Feromônios/classificação , Receptores de Feromônios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Olfato/genética
3.
BMC Genomics ; 18(1): 32, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056777

RESUMO

BACKGROUND: The oriental armyworm Mythimna separata (Walk) is a serious migratory pest; however, studies on its olfactory response and its underlying molecular mechanism are limited. To gain insights to the olfactory mechanism of migration, olfactory genes were identified using antennal transcriptome analysis. The olfactory response and the expression of olfactory genes for 1-day and 5-day-old moths were respectively investigated by EAG and RT-qPCR analyses. RESULTS: Putative 126 olfactory genes were identified in M. separata, which included 43 ORs, 13 GRs, 16 IRs, 37 OBPs, 14 CSPs, and 3 SNMPs. RPKM values of IR75d and 10 ORs were larger than co-receptors IR25a and ORco, and the RPKM value of PR2 was larger than that of other ORs. Expression of GR1 (sweet receptor) was higher than that of other GRs. Several sex pheromones activated evident EAG responses where the responses of 5-day-old male moths to the sex pheromones were significantly greater than those of female and 1-day old male moths. In accordance with the EAG response, 11 pheromone genes, including 6 PRs and 5 PBPs were identified in M. separate, and the expression levels of 7 pheromone genes in 5-day-old moths were significantly higher than those of females and 1-day-old moths. PR2 and PBP2 might be used in identifying Z11-16: Ald, which is the main sex pheromone component of M. separata. EAG responses to 16 plant volatiles and the expression levels of 43 olfactory genes in 1-day-old moths were significantly greater than that observed in the 5-day-old moths. Heptanal, Z6-nonenal, and benzaldehyde might be very important floral volatiles for host searching and recognized by several olfactory genes with high expression. Some plant volatiles might be important to male moths because the EAG response to 16 plant volatiles and the expression of 43 olfactory genes were significantly larger in males than in females. CONCLUSIONS: The findings of the present study show the effect of adult age on olfactory responses and expression profile of olfactory genes in the migratory pest M. separate.


Assuntos
Perfilação da Expressão Gênica , Mariposas/genética , Receptores Odorantes/genética , Transcriptoma , Animais , Antenas de Artrópodes/metabolismo , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Atrativos Sexuais/metabolismo , Atrativos Sexuais/farmacologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...