Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 137: 102413, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38492895

RESUMO

Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.


Assuntos
Dor Crônica , Bulbo Olfatório , Humanos , Dor Crônica/terapia , Animais , Bulbo Olfatório/citologia , Neuroglia , Transplante de Células/métodos
2.
Int J Nanomedicine ; 6: 1641-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904454

RESUMO

BACKGROUND: Gene therapy is a promising approach to the treatment of a wide range of diseases. The development of efficient and adequate gene delivery systems could be one of the most important factors. Polyethyleneimine, a cationic polymer, is one of the most successful and widely used vectors for nonviral transfection in vitro and in vivo. METHODS: A novel biodegradable poly(ester amine) copolymer (PEA) was successfully prepared from low molecular weight polyethylenimine (PEI, 2000 Da) and poly(L-lactide) copolymers. RESULTS: According to the results of agarose gel electrophoresis, particle size and zeta potential measurement, and transfection efficiency, the PEA copolymers showed a good ability to condense plasmid DNA effectively into nanocomplexes with a small particle size (≤150 nm) and moderate zeta potential (≥10 mV) at an appropriate polymeric carrier/DNA weight ratio. Compared with high molecular weight PEI (25kDa), the PEA obtained showed relatively high gene transfection efficiency as well as low cytotoxicity in vitro. CONCLUSION: These results indicate that such PEA might have potential application as a gene delivery system.


Assuntos
Técnicas de Transferência de Genes , Poliésteres/química , Polietilenoimina/química , Análise de Variância , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Células HEK293 , Células Hep G2 , Humanos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Tamanho da Partícula , Poliésteres/administração & dosagem , Poliésteres/síntese química , Polietilenoimina/administração & dosagem , Polietilenoimina/síntese química , Transfecção
3.
J Nanosci Nanotechnol ; 10(12): 7958-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121283

RESUMO

In this paper, we prepared a novel cationic self-assembled micelle from poly(epsilon-caprolactone)-poly(ethyl glycol)-poly(epsilon-caprolactone) grafted polyethyleneimine (PCEC-g-PEI). The PCEC-g-PEI micelles, formed by self-assembly method, had mean particle size of ca. 82 nm and zeta potential of +22.5 mV at 37 degrees C, and could efficiently transfer pGFP into HEK293 cells in vitro. Meanwhile, as a model hydrophobic chemotherapeutic drug, honokiol was loaded into PCEC-g-PEI micelles by direct dissolution method assisted by ultrasonication. The honokiol loaded cationic PCEC-g-PEI micelles could effectively adsorb DNA onto its surface, while it could release honokiol in an extended period in vitro. This study demonstrated a novel DNA and hydrophobic chemotherapeutic drug co-delivery system.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Micelas , Nanoconjugados/química , Poliésteres/química , Polietilenoglicóis/química , Polietilenoimina/química , Compostos de Bifenilo/farmacocinética , Sobrevivência Celular , DNA/administração & dosagem , DNA/química , DNA/genética , Células HEK293 , Humanos , Lignanas/farmacocinética , Tamanho da Partícula , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...