Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278560

RESUMO

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Assuntos
Caderinas , Lesões das Artérias Carótidas , Diterpenos , Lesões do Sistema Vascular , Camundongos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Vascular , Proliferação de Células , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Lesões das Artérias Carótidas/patologia , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Movimento Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Succinatos/metabolismo , Succinatos/farmacologia , Potássio/metabolismo , Potássio/farmacologia , Células Cultivadas
2.
Drug Des Devel Ther ; 17: 1567-1582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249931

RESUMO

Purpose: Dysfunction of endothelium is associated with multiple pathological vascular diseases. However, how to regulate reendothelialization after vascular injury is not well defined. This study aims to determine whether and how Paeonol controls reendothelialization following artery injury. Methods: The endothelium of murine carotid artery was denuded by catheter guide wires injury. H&E staining and IF staining were performed to determine whether Paeonol is critical for reendothelialization. BRDU Incorporation Assay, Boyden Chamber Migration Assay, Tube Formation Assay, and Spheroid Sprouting Assay were used to investigate whether Paeonol is involved in regulating proliferation and migration of endothelial cells. The underlying mechanism of how Paeonol regulates reendothelialization was determined by Molecular docking simulation and CO-IP Assay. Results: Paeonol treatment significantly inhibits neointima formation in carotid artery ligation model by promoting proliferation and migration of endothelial cells. Mechanistically, Paeonol enhances c-Myc expression, consequently interacts with VEGFR2 results in activating VEGF signaling pathway, and eventually promotes reendothelialization after vascular injury. Conclusion: Our data demonstrated that Paeonol plays a critical role in regulating vascular reendothelialization, which may be therapeutically used for treatment of pathological vascular diseases.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Camundongos , Animais , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/patologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Células Cultivadas
3.
Front Cardiovasc Med ; 10: 1090938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844722

RESUMO

Introduction: Ocular abnormalities and the development of retinal vasculature may cause postnatal retinopathy. In the past decade, tremendous progress has been made in identifying the mechanisms that regulate retina vasculature. However, the means of regulating embryonic hyaloid vasculature development is largely unknown. This study aims to determine whether and how andrographolide regulates embryonic hyaloid vasculature development. Methods: Murine embryonic retinas were used in this study. Whole mount isolectin B4 (IB4) staining, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and immunofluorescence staining (IF) were performed to determine whether andrographolide is critical for embryonic hyaloid vasculature development. BrdU incorporation assay, Boyden chamber migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay were performed to evaluate whether andrographolide regulates the proliferation and migration of vascular endothelial cells. Molecular docking simulation and Co-immunoprecipitation assay were used to observe protein interaction. Results: Hypoxia conditions exist in murine embryonic retinas. Hypoxia induces HIF-1a expression; high-expressed HIF-1a interacts with VEGFR2, resulting in the activation of the VEGF signaling pathway. Andrographolide suppresses hypoxia-induced HIF-1a expression and, at least in part, interrupts the interaction between HIF-1a and VEGFR2, causing inhibiting endothelial proliferation and migration, eventually inhibiting embryonic hyaloid vasculature development. Conclusion: Our data demonstrated that andrographolide plays a critical role in regulating embryonic hyaloid vasculature development.

4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834519

RESUMO

Impairment of vascular endothelial integrity is associated with various vascular diseases. Our previous studies demonstrated that andrographolide is critical to maintaining gastric vascular homeostasis, as well as to regulating pathological vascular remodeling. Potassium dehydroandrograpolide succinate (PDA), a derivative of andrographolide, has been clinically used for the therapeutic treatment of inflammatory diseases. This study aimed to determine whether PDA promotes endothelial barrier repair in pathological vascular remodeling. Partial ligation of the carotid artery in ApoE-/- mice was used to evaluate whether PDA can regulate pathological vascular remodeling. A flow cytometry assay, BRDU incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay and Matrigel-based tube formation assay were performed to determine whether PDA can regulate the proliferation and motility of HUVEC. A molecular docking simulation and CO-immunoprecipitation assay were performed to observe protein interactions. We observed that PDA induced pathological vascular remodeling characterized by enhanced neointima formation. PDA treatment significantly enhanced the proliferation and migration of vascular endothelial cells. Investigating the potential mechanisms and signaling pathways, we observed that PDA induced endothelial NRP1 expression and activated the VEGF signaling pathway. Knockdown of NRP1 using siRNA transfection attenuated PDA-induced VEGFR2 expression. The interaction between NRP1 and VEGFR2 caused VE-Cad-dependent endothelial barrier impairment, which was characterized by enhanced vascular inflammation. Our study demonstrated that PDA plays a critical role in promoting endothelial barrier repair in pathological vascular remodeling.


Assuntos
Células Endoteliais , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Simulação de Acoplamento Molecular , Potássio/metabolismo , Transdução de Sinais , Succinatos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neuropilina-1
5.
Eur J Pharmacol ; 940: 175474, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36549500

RESUMO

Dysregulation of neuronal development may cause neurodevelopmental disorders. However, how to regulate embryonic neuronal development and whether this regulation can be medical interrupted are largely unknown. This study aimed to investigate whether and how andrographolide (ANP) regulates embryonic neuronal development. The pregnant mice at embryonic day 10.5 (E10.5) were administrated with ANP, and the embryonic brains were harvested at E17.5 or E18.5. Immunofluorescence (IF), Immunohistochemistry (IHC) performed to determine whether ANP is critical in regulating neuronal development. Real-time quantitative PCR, western blotting, cell counting kit-8 assay, Flow Cytometry assay, Boyden Chamber Migration assay carried out to evaluate whether ANP regulates neuronal proliferation and migration. Protein-protein interaction, CO-immunoprecipitation and IF staining carried out to evaluate whether ANP regulates the interaction between PFKFB3, NeuN and TBR1. Knockdown or overexpression of PFKFB3 by adenovirus infection were used to determine whether ANP inhibits neuronal development through PFKFB3 mediated glycolytic pathway. Our data indicated that ANP inhibited the maturation of embryonic neurons characterized by suppressing neuronal proliferation and migration. ANP regulated the interaction between PFKFB3, NeuN, and TBR1. Knockdown of PFKFB3 aggravated ANP mediated inhibition of neuronal proliferation and migration, while overexpression of PFKFB3 attenuated ANP mediated neuronal developmental suppression. In summary, ANP suppressed the expression of PFKFB3, and interrupted the interaction between TRB1 and NeuN, resulting in suppressing neuronal proliferation, migration and maturation and eventually inhibiting murine embryonic neuronal development.


Assuntos
Diterpenos , Fosfofrutoquinase-2 , Gravidez , Feminino , Camundongos , Animais , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Diterpenos/farmacologia , Glicólise , Proliferação de Células
6.
Front Cardiovasc Med ; 8: 783872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127859

RESUMO

INTRODUCTION: Pathological vascular remodeling is a hallmark of various vascular diseases. Smooth muscle cell (SMC) phenotypic switching plays a pivotal role during pathological vascular remodeling. The mechanism of how to regulate SMC phenotypic switching still needs to be defined. This study aims to investigate the effect of Andrographolide, a key principle isolated from Andrographis paniculate, on pathological vascular remodeling and its underlying mechanism. METHODS: A C57/BL6 mouse left carotid artery complete ligation model and rat SMCs were used to determine whether Andrographolide is critical in regulating SMC phenotypic switching. Quantitative real-time PCR, a CCK8 cell proliferation assay, BRDU incorporation assay, Boyden chamber migration assay, and spheroid sprouting assay were performed to evaluate whether Andrographolide suppresses SMC proliferation and migration. Immunohistochemistry staining, immunofluorescence staining, and protein co-immunoprecipitation were used to observe the interaction between EDNRA, EDNRB, and Myocardin-SRF. RESULTS: Andrographolide inhibits neointimal hyperplasia in the left carotid artery complete ligation model. Andrographolide regulates SMC phenotypic switching characterized by suppressing proliferation and migration. Andrographolide activates the endothelin signaling pathway exhibited by dramatically inducing EDNRA and EDNRB expression. The interaction between EDNRA/EDNRB and Myocardin-SRF resulted in promoting SMC differentiation marker gene expression. CONCLUSION: Andrographolide plays a critical role in regulating pathological vascular remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...