Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 312(2): G112-G122, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979825

RESUMO

Cecal crypts represent a unique niche that are normally occupied by the commensal microbiota. Due to their density and close proximity to stem cells, microbiota within cecal crypts may modulate epithelial regeneration. Here we demonstrate that surgical stress, a process that invariably involves a short period of starvation, antibiotic exposure, and tissue injury, results in cecal crypt evacuation of their microbiota. Crypts devoid of their microbiota display pathophysiological features characterized by abnormal stem cell activation as judged by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) staining, expansion of the proliferative zone toward the tips of the crypts, and an increase in apoptosis. In addition, crypts devoid of their microbiota display loss of their regenerative capacity as assessed by their ability to form organoids ex vivo. When a four-member human pathogen community isolated from the stool of a critically ill patient is introduced into the cecum of mice with empty crypts, crypts become occupied by the pathogens and further disruption of crypt homeostasis is observed. Fecal microbiota transplantation restores the cecal crypts' microbiota, normalizes homeostasis within crypts, and reestablishes crypt regenerative capacity. Taken together, these findings define an emerging role for the microbiota within cecal crypts to maintain epithelial cell homeostasis in a manner that may enhance recovery in response to the physiological stress imposed by the process of surgery. NEW & NOTEWORTHY: This study provides novel insight into the process by which surgical injury places the intestinal epithelium at risk for colonization by pathogenic microbes and impairment of its regenerative capacity via loss of its microbiota. We show that fecal transplant restores crypt homeostasis in association with repopulation of the microbiota within cecal crypts.


Assuntos
Ceco/microbiologia , Mucosa Intestinal/fisiologia , Microbiota , Animais , Ceco/ultraestrutura , Regulação da Expressão Gênica , Homeostase , Mucosa Intestinal/microbiologia , Mucosa Intestinal/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Nature ; 459(7250): 1110-3, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19553995

RESUMO

Thin streams of liquid commonly break up into characteristic droplet patterns owing to the surface-tension-driven Plateau-Rayleigh instability. Very similar patterns are observed when initially uniform streams of dry granular material break up into clusters of grains, even though flows of macroscopic particles are considered to lack surface tension. Recent studies on freely falling granular streams tracked fluctuations in the stream profile, but the clustering mechanism remained unresolved because the full evolution of the instability could not be observed. Here we demonstrate that the cluster formation is driven by minute, nanoNewton cohesive forces that arise from a combination of van der Waals interactions and capillary bridges between nanometre-scale surface asperities. Our experiments involve high-speed video imaging of the granular stream in the co-moving frame, control over the properties of the grain surfaces and the use of atomic force microscopy to measure grain-grain interactions. The cohesive forces that we measure correspond to an equivalent surface tension five orders of magnitude below that of ordinary liquids. We find that the shapes of these weakly cohesive, non-thermal clusters of macroscopic particles closely resemble droplets resulting from thermally induced rupture of liquid nanojets.

3.
J Phys Chem C Nanomater Interfaces ; 113(26): 11190-11197, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20161411

RESUMO

Surface Enhanced Raman Spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein we report the development of exceptionally high fidelity Hole-Enhanced Raman Spectroscopy (HERS) from ordered, two-dimensional hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f ~ 2% - 15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step towards making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large scale source of highly uniform hot spots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...