Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Anesthesiol ; 23(1): 116, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024806

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by the infection-related host response disorder. Adequate mean arterial pressure is an important prerequisite of tissue and organ perfusion, which runs through the treatment of sepsis patients, and an appropriate mean arterial pressure titration in the early-stage correlates to the positive outcome of the treatment. Therefore, in the present study, we aimed to elucidate the relationship between early mean arterial pressure levels and short-term mortality in sepsis patients. METHODS: We included all suspected sepsis patients from MIMIC-III database with average mean arterial pressure ≥ 60 mmHg on the first day of intensive care unit stay. Those patients were then divided into a permissive low-mean arterial pressure group (60-65 mmHg) and a high-mean arterial pressure group (> 65 mmHg). Multivariate Cox regression analysis was conducted to analyze the relationship between MAP level and 30-day, 60-day, and 100-day mortality of suspected sepsis patients in the two groups. Propensity score matching, inverse probability of treatment weighing, standardized mortality ratio weighting, PA weighting, overlap weighting, and doubly robust analysis were used to verify our results. RESULTS: A total of 14,031 suspected sepsis patients were eligible for inclusion in our study, among which 1305 (9.3%) had an average first-day mean arterial pressure of 60-65 mmHg, and the remaining 12,726 patients had an average first-day mean arterial pressure of more than 65 mmHg. The risk of 30-day mortality was reduced in the high mean arterial pressure group compared with the permissive low-mean arterial pressure group (HR 0.67 (95% CI 0.60-0.75; p < 0.001)). The higher mean arterial pressure was also associated with lower 60-day and 100-day in-hospital mortality as well as with shorter duration of intensive care unit stay. Patients in the high-mean arterial pressure group also had more urine output on the first and second days of intensive care unit admission. CONCLUSIONS: After risk adjustment, the initial mean arterial pressure of above 65 mmHg was associated with reduced short-term mortality, shorter intensive care unit stay, and higher urine volume in the first two days among patients with sepsis.


Assuntos
Hipotensão , Sepse , Humanos , Estudos Retrospectivos , Pontuação de Propensão , Sepse/terapia , Pressão Arterial , Unidades de Terapia Intensiva
2.
Cell Biol Toxicol ; 39(3): 813-825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34524571

RESUMO

Chemotherapy resistance is an important problem for clinical therapy of osteosarcoma (OS). The potential effects of histone deacetylases (HDACs) on OS chemoresistance are studied. The expression of HDACs in OS cells resistance to doxorubicin (Dox) and cisplatin (CDDP) is checked. Among 11 members of HDACs, levels of HDAC6 are significantly upregulated in OS cells resistance to Dox and CDDP. Inhibition of HDAC6 via its specific inhibitor ACY1215 restores chemosensitivity of OS-resistant cells. Further, HDAC6 directly binds with estrogen-related receptors alpha (ERRα) to regulate its acetylation and protein stability. Inhibition of ERRα further strengthens ACY1215-increased chemosensitivity of OS-resistant cells. Mechanistically, K129 acetylation is the key residue for HDAC6-regulated protein levels of ERRα. Collectively, we find that ERRα contributes to HDAC6-induced chemoresistance of OS cells. Inhibition of HDAC6/ERRα axis might be a potential approach to overcome chemoresistance and improve therapy efficiency for OS treatment. 1. HDAC6 was significantly upregulated in Dox and CDDP resistant OS cells; 2. Inhibition of HDAC6 can restore chemosensitivity of OS cells; 3. HDAC6 binds with ERRα at K129 to decrease its acetylation and increase protein stability; 4. ERRα contributes to HDAC6-induced chemoresistance of OS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Resistencia a Medicamentos Antineoplásicos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/farmacologia , Desacetilase 6 de Histona/uso terapêutico , Receptor ERRalfa Relacionado ao Estrogênio
3.
J Transl Med ; 20(1): 348, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918761

RESUMO

Doxorubicin (Dox) is the standard treatment approach for osteosarcoma (OS), while acquired drug resistance seriously attenuates its treatment efficiency. The present study aimed to investigate the potential roles of metabolic reprogramming and the related regulatory mechanism in Dox-resistant OS cells. The results showed that the ATP levels, lactate generation, glucose consumption and oxygen consumption rate were significantly increased in Dox-resistant OS cells compared with parental cells. Furthermore, the results revealed that the increased expression of estrogen-related receptor alpha (ERRα) was involved in metabolic reprogramming in chemotherapy resistant OS cells, since targeted inhibition of ERRα restored the shifting of metabolic profiles. Mechanistic analysis indicated that the mRNA stability, rather than ERRα transcription was markedly increased in chemoresistant OS cells. Therefore, it was hypothesized that the 3'-untranslated region of ERRα mRNA was methylated by N6-methyladenine, which could further recruit insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress mRNA decay and increase mRNA stability. IGF2BP1 knockdown downregulated ERRα and reversed the metabolic alteration of resistant OS cells. Additionally, the oncogenic effect of the IGF2BP1/ERRα axis on Dox-resistant OS cells was verified by in vitro and in vivo experiments. Clinical analysis also revealed that the expression levels of IGF2BP1 and ERRα were associated with the clinical progression of OS. Collectively, the current study suggested that the IGF2BP1/ERRα axis could regulate metabolic reprogramming to contribute to the chemoresistance of OS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Regiões 3' não Traduzidas/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Receptores de Estrogênio , Receptor ERRalfa Relacionado ao Estrogênio
4.
J Cell Mol Med ; 23(3): 2115-2124, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609256

RESUMO

Chemotherapy resistance is one of the major challenges for the treatment of osteosarcoma (OS). The potential roles of oestrogenic signals in the chemoresistance of OS cells were investigated. As compare to the parental cells, the doxorubicin and cisplatin (CDDP) resistant OS cells had greater levels of oestrogen-related receptors alpha (ERRα). Targeted inhibition of ERRα by its specific siRNAs or inverse agonist XCT-790 can restore the sensitivity of OS resistant cells to chemotherapy. This might be due to that si-ERRα can decrease the expression of P-glycoprotein (P-gp, encoded by ABCB1), one important ABC membrane transporter for drug efflux. XCT-790 can decrease the transcription and mRNA stability of ABCB1, while had no effect on protein stability of P-gp. ERRα can bind to the transcription factor of SP3 to increase the transcription of ABCB1. Furthermore, XCT-790 treatment decreased the expression of miR-9, which can bind to the 3'UTR of ABCB1 and trigger its decay. Collectively, we found that ERRα can regulate the chemoresistance of OS cells via regulating the transcription and mRNA stability of ABCB1. Targeted inhibition of ERRα might be a potential approach for OS therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Receptores de Estrogênio/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Nitrilas/farmacologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ligação Proteica , Interferência de RNA , Receptores de Estrogênio/metabolismo , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo , Tiazóis/farmacologia , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...