Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877776

RESUMO

Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.

2.
Neuroendocrinology ; 114(7): 605-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547853

RESUMO

INTRODUCTION: Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS: This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS: Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION: This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.


Assuntos
Diarreia , Modelos Animais de Doenças , Núcleo Dorsal da Rafe , Hormônios Hipotalâmicos , Síndrome do Intestino Irritável , Melaninas , Hormônios Hipofisários , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Núcleo Dorsal da Rafe/metabolismo , Hormônios Hipofisários/metabolismo , Hormônios Hipotalâmicos/metabolismo , Camundongos , Diarreia/metabolismo , Diarreia/etiologia , Masculino , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Serotonina/metabolismo , Emoções/fisiologia , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ansiedade/metabolismo , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Comportamento Animal/fisiologia
3.
Neuroreport ; 34(2): 108-115, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608164

RESUMO

Irritable bowel syndrome (IBS) is characterized by gastrointestinal dysmotility and visceral hyperalgesia, and the impaired brain-gut axis is accepted as a crucial cause for the onset of IBS. The objective of this study is to investigate the effects of the adaptive changes in the central neural system induced by stress on IBS-like syndromes in rats. Long-term water avoidance stress (WAS) was used to prepare IBS animals. The changes in neuronal excitation and GABA expression were shown by immunohistochemistry. The mRNA and protein expressions of neurotransmitters were detected with Quantitative reverse-transcription PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA). The intestinal transit time, fecal moisture content, and abdominal withdrawal reflex scores of rats were recorded to monitor intestinal motility and visceral hyperalgesia. In the WAS-treated rats with enhanced intestinal motility and visceral hypersensitivity, more GABAergic projections were found in the paraventricular nucleus (PVN) of the hypothalamus, which inhibited the firing rate of neurons and decreased the expression of oxytocin. Exogenous oxytocin improved gut motility and decreased AWR scores. The inhibition of oxytocin by the adaptive GABAergic projection in the PVN might be an important mediator of IBS, which indicates a potential novel therapeutic target.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina , Hiperalgesia , Fezes
4.
Neurogastroenterol Motil ; 35(2): e14498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36408759

RESUMO

BACKGROUND: Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS: The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS: In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES: The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.


Assuntos
Núcleo Central da Amígdala , Síndrome do Intestino Irritável , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Núcleo Central da Amígdala/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Síndrome do Intestino Irritável/metabolismo , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Motilidade Gastrointestinal
5.
Front Pharmacol ; 13: 906057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016574

RESUMO

The limbic system plays a pivotal role in stress-induced anxiety and intestinal disorders, but how the functional circuits between nuclei within the limbic system are engaged in the processing is still unclear. In our study, the results of fluorescence gold retrograde tracing and fluorescence immunohistochemistry showed that the melanin-concentrating hormone (MCH) neurons of the lateral hypothalamic area (LHA) projected to the basolateral amygdala (BLA). Both chemogenetic activation of MCH neurons and microinjection of MCH into the BLA induced anxiety disorder in mice, which were reversed by intra-BLA microinjection of MCH receptor 1 (MCHR1) blocker SNAP-94847. In the chronic acute combining stress (CACS) stimulated mice, SNAP94847 administrated in the BLA ameliorated anxiety-like behaviors and improved intestinal dysfunction via reducing intestinal permeability and inflammation. In conclusion, MCHergic circuit from the LHA to the BLA participates in the regulation of anxiety-like behavior in mice, and this neural pathway is related to the intestinal dysfunction in CACS mice by regulating intestinal permeability and inflammation.

6.
Int J Public Health ; 67: 1605425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686388

RESUMO

Objective: This study evaluated the associations of solid fuels with incidence of falls and fall-related injuries. Methods: Data were taken from wave 1∼4 of the China Health and Retirement Longitudinal Study, including 15,651 participants aged 45 years and older. Modified Poisson regression was used to examine the associations of solid fuels with falls and fall-related injuries. Results: Modified Poisson regression analysis showed that solid fuels users for cooking had an increasing incidence of falls and fall-related injuries, with RR of 1.211 (95% CI: 1.124, 1.305) and 1.248 (95% CI: 1.107, 1.408); for heating had an incidence, with RR of 1.178 (95% CI: 1.062, 1.306) and 1.134 (95% CI: 0.963, 1.335); combined for cooking and heating, with RR of 1.247 (95% CI: 1.105, 1.408) and 1.185 (95% CI: 0.982, 1.431). Conclusion: Our study suggests that solid fuel use is associated with a higher incidence of falls and fall-related injuries among adults aged 45 years and older in China. It is necessary to restrict solid fuel use to reduce household air pollution and make stronger environmental protection policies to improve household environment.


Assuntos
Acidentes por Quedas , Poluição do Ar em Ambientes Fechados , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Estudos de Coortes , Estudos Longitudinais , Características da Família , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...