Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(30): 5784-5795, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35861050

RESUMO

Ferroptosis, as a form of cell death different from apoptosis, is very promising for the treatment of cancer in nonapoptotic systems. Since iron is a key component in the induction of ferroptosis in cells, the use of iron-based nanomaterials in treating cancer through ferroptosis is of great significance. Therefore, in this study, magnetic nanoparticles (MNP) were coated with the zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and then loaded with sorafenib (SRF) to obtain drug-loaded composite nanoparticles MNP@PMPC-SRF. Fe3O4 provided a large number of ferric/ferrous ions as an iron source, releasing Fe2+ for the regulation of the ferroptosis process and enhancing the effect of the induced cellular ferroptosis on the treatment of colon cancer with SRF. The zwitterionic polymer PMPC effectively extended the blood circulation time, resulting in an enhanced tumor accumulation of the nanodrug. MNP@PMPC-SRF exhibited good biocompatibility for in vivo application and showed an excellent tumor inhibitory effect on HCT116 tumor-bearing nude mice.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Animais , Ferro , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Sorafenibe/farmacologia
2.
J Mater Chem B ; 8(28): 6128-6138, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32568335

RESUMO

In recent years, zeolitic imidazolate framework-8 (ZIF-8) has become an attractive metal organic framework (MOF) material in drug delivery for cancer chemotherapy. However, as a drug delivery system, ZIF-8 still shows some disadvantages, such as short blood circulation time and poor tumor targeting, leading to reduced drug delivery efficiency and unsatisfactory treatment. Herein, we developed a phosphorylcholine-based zwitterionic copolymer coated ZIF-8 nanodrug (DOX@ZIF-8@P(MPC-co-C7A)), and the obtained nanodrug was prepared via a charge-conversional zwitterionic copolymer coating on DOX@ZIF-8 composites. In this system, DOX was encapsulated in the framework of ZIF-8, which could reduce the drug leakage in the bloodstream. The phosphorylcholine-based zwitterionic copolymer effectively extended the blood circulation time, resulting in enhanced tumor accumulation of the nanodrug. Once the nanodrug reached the tumor site, the surface charge of the system could rapidly convert to positive, resulting in an enhanced tumor cellular uptake. Finally, in the acidic environment inside intracellular organelles, DOX will be released rapidly for chemotherapy owing to the fast disintegration of ZIF-8 frameworks. Therefore, the obtained nanodrug could effectively inhibit the growth of A549-bearing tumors (93.2% tumor inhibition rate) with negligible side effects. Overall, this work significantly improved the drug delivery efficiency of ZIF-8, which may pave the way for the biomedical applications of ZIF-8 crystals in anti-tumor drug delivery.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas/química , Fosforilcolina/farmacologia , Polímeros/farmacologia , Zeolitas/farmacologia , Células A549 , Animais , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Tempo de Circulação Sanguínea , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/síntese química , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Imagem Óptica , Tamanho da Partícula , Fosforilcolina/síntese química , Fosforilcolina/química , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície , Zeolitas/síntese química , Zeolitas/química
3.
Front Pharmacol ; 11: 226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210814

RESUMO

Recently, chemodynamic therapy (CDT) has represented a new approach for cancer treatment with low toxicity and side effects. Nonetheless, it has been a challenge to improve the therapeutic effect through increasing the amount of reactive oxygen species (ROS). Herein, we increased the amount of ROS agents in the Fenton-like reaction by loading dihydroartemisinin (DHA) which was an artemisinin (ART) derivative containing peroxide groups, into magnetic nanoparticles (MNP), thereby improving the therapeutic effect of CDT. Blank MNP were almost non-cytotoxic, whereas three MNP loading ART-based drugs, MNP-ART, MNP-DHA, and MNP-artesunate (MNP-AS), all showed significant killing effect on breast cancer cells (MCF-7 cells), in which MNP-DHA were the most potent. What's more, the MNP-DHA showed high toxicity to drug-resistant breast cancer cells (MCF-7/ADR cells), demonstrating its ability to overcome multidrug resistance (MDR). The study revealed that MNP could produce ferrous ions under the acidic condition of tumor microenvironment, which catalyzed DHA to produce large amounts of ROS, leading to cell death. Further experiments also showed that the MNP-DHA had significant inhibitory effect on another two aggressive breast cancer cell lines (MDA-MB-231 and MDA-MB-453 cells), which indicated that the great potential of MNP-DHA for the treatment of intractable breast cancers.

4.
Adv Healthc Mater ; 9(5): e1901582, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990434

RESUMO

Multiple drug resistance (MDR) exhibited by cancer cells and low intratumor accumulation of chemotherapeutics are the main obstacles in cancer chemotherapy. Herein, the preparation of a redox-responsive sulfur dioxide (SO2 )-releasing nanosystem, with high SO2 -loading capacity, aimed at improving the treatment efficacy of cancers exhibiting MDR is described. The multifunctional nanomedicine (MON-DN@PCBMA-DOX) is designed and constructed by coating mesoporous organosilica nanoparticles with a zwitterionic polymer, poly(carboxybetaine methacrylate) (PCBMA), which can concurrently load SO2 prodrug molecules (DN, 2,4-dinitrobenzenesulfonylchloride) and chemotherapeutics (DOX, doxorubicin). The generated SO2 molecules can sensitize cells to chemotherapy and overcome the MDR by downregulating the expression of P-glycoprotein. Furthermore, the PCBMA coating prolongs the blood circulation time of the inner core, leading to an increased intratumor accumulation of the nanomedicine. Owing to the prolonged blood circulation, enhanced tumor accumulation, and SO2 sensitization of cells to chemotherapy, the nanomedicine exhibits excellent tumor suppression with a tumor inhibition rate of 94.8%, and might provide a new platform for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Dióxido de Enxofre/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...