Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 275: 116543, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556735

RESUMO

Red mud was a highly alkaline hazardous waste, and their resource utilization was a research hotspot. In this study, influencing mechanisms of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted soil, photosynthetic property, and Cd accumulation in edible amaranth were investigated based on the evaluation of Cd adsorption capacity, root metabolic response, and soil aggregate distribution. Results showed that red mud exhibited good Cd adsorption capacities at about 35 °C and pH 9 in an aqueous solution, and the adsorption behavior of red mud on Cd in rhizosphere soil solution was considered to have some similarity. In the soil-pot trial, red mud application significantly facilitated edible amaranth growth by enhancing the maximum photochemical efficiency and light energy absorption by per unit leaf area by activating more reaction centers. The main mechanisms of rhizosphere soil Cd immobilisation by red mud application included: i) the reduction of mobilized Cd caused by the increasing negative surface charge of soil and precipitation of Cd hydroxides and carbonates at high pH; ii) the increase of organics-Cd complexes caused by the increasing -OH and -COOH amounts adsorbed on the surface of rhizosphere soil after red mud application; and iii) the decrease of available Cd content in soil aggregates caused by the increasing organic matters after red mud application. This study would provide the basis for the safe utilization of red mud remediating acidic Cd-polluted soil.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , Poluição Ambiental , Rizosfera , Poluentes do Solo/análise
2.
Sci Total Environ ; 732: 139265, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32416401

RESUMO

Microbe-assisted phytoremediation for Cd-polluted soil is being regarded increasingly. However, the availability of microbes that can collaborate with Cd-hyperaccumulators effectively has become one of bottlenecks restricting the remediation efficiency. A siderophore-producing bacterium (Y16; Enterobacter cloacae) isolated from the rhizospheric soil of Cd-hyperaccumulator Solanum nigrum L. was identified by 16S rRNA gene sequencing and biochemical analysis, and then used for analyzing microbial chemotaxis, carbon source utilization, and insoluble P/Cd mobilization capacities. Besides, a soil-pot trial was performed to underlie the phytoremediation mechanism of Cd-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization (DEYC) in the Solanum nigrum L. rhizosphere. Results displayed that D-gluconate was an effective chemoattractant and carbon source strengthening Y16 colonization, and Y16 exhibited strong abilities to mobilize insoluble P/Cd in shake flask by extracellular acidification (p < 0.05). In the soil-pot trial, DEYC observably enhanced soil Cd phytoextraction by Solanum nigrum L., and increased microbial diversity according to alpha- and beta-diversity analysis (p < 0.05). Taxonomic distribution and co-occurrence network analysis suggested that DEYC increased relative abundances of dominant microbial taxa associated with soil acidification (Acidobacteria-6), indoleacetic acid secretion (Ensifer adhaerens), soil fertility improvement (Flavisolibacter, Bdellovibrio bacteriovorus, and Candidatus nitrososphaera), and insoluble Cd mobilization (Massilia timonae) at different classification levels. Importantly, COGs analysis further shown that DEYC aroused the up-regulation of key genes related to chemotactic motility, carbon fixation, TCA cycle, and propanoate metabolism. These results indicated that DEYC drove the rhizospheric enrichment of pivotal microbial taxa directly or indirectly involved in soil Cd mobilization, meanwhile distinctly promoted plant growth for accumulating more mobilizable Cd. Therefore, Y16 could be used as bio-inoculants for assisting phytoremediation of Cd-polluted soil.


Assuntos
Solanum nigrum , Biodegradação Ambiental , Cádmio , Enterobacter cloacae , Gluconatos , RNA Ribossômico 16S , Rizosfera , Solo , Poluentes do Solo
3.
Environ Pollut ; 262: 114304, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32179214

RESUMO

Strategies to prevent cadmium (Cd) mobilization by crops under salinity conditions differs among distinct genotypes, but the biological mechanisms of Cd accumulation in different genotype crops promoted by salinity have remained scarce. In this study, we investigated the biological mechanisms of Cd accumulation in two quite different amaranth cultivars of low-Cd accumulator Quanhong (QH) and high-Cd accumulator Liuye (LY) in response to salt stress. Transcriptomes analysis was carried out on leaves and roots tissues of LY and QH grown with exchangeable Cd 0.27 mg kg-1 and salinity 3.0 g kg-1 treatment or control conditions, respectively. A total of 3224 differentially expressed genes (DEGs) in LY (1119 in roots, 2105 in leaves) and 848 in QH (207 in roots, 641 in leaves) were identified. Almost in each fold change category (2-25, 25-210, >210), the numbers of DEGs induced by salinity in LY treatments were much more than those in QH treatments, indicating that LY is more salt sensitive. Gene ontology (GO) analysis revealed that salinity stress promoted soil acidification and Cd mobilization in LY treatments through the enhancive expression of genes related to adenine metabolism (84-fold enrichment) and proton pumping ATPase (50-fold enrichment) in roots, and carbohydrate hydrolysis (2.5-fold enrichment) in leaves compared with that of whole genome, respectively. The genes expression of organic acid transporter (ALMT) was promoted by 2.71- to 3.94-fold in roots, facilitating the secretion of organic acids. Salt stress also inhibited the expression of key enzymes related to cell wall biosynthesis in roots, reducing the physical barriers for Cd uptake. All these processes altered in LY were more substantially compared with that of QH, suggesting that salt sensitive cultivars might accumulate more Cd and pose a higher health risk.


Assuntos
Amaranthus , Poluentes do Solo/análise , Cádmio/análise , Perfilação da Expressão Gênica , Raízes de Plantas/química , Salinidade , Solo , Transcriptoma
4.
Environ Sci Pollut Res Int ; 25(36): 36328-36340, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368704

RESUMO

Chinese flowering cabbage is a commonly consumed vegetable that accumulates Cd easily from Cd-contaminated soils. Cultivations of low-Cd cultivars are promising strategies for food safety, but low-Cd-accumulating mechanisms are not fully elucidated. To address this issue, 37 cultivars were screened to identify high- and low-Cd cultivars upon exposure to sewage-irrigated garden soil pretreated with different Cd concentrations (1.81, 2.90, and 3.70 mg kg-1dry soil). The results showed that shoot Cd concentrations differed among the cultivars by maximum degrees of 2.67-, 3.71-, and 3.00-fold under control and treatments, respectively. Soil-pot trial and hydroponic trial found no significant difference in Cd and Ca mobilization, uptake, and transport ability by root per weight between high- and low-Cd cultivars. Interestingly, a stable R/S ratio difference among cultivars (p < 0.01) was observed, and the cultivar variation of Cd accumulation in shoots was mainly dependent on their R/S ratios. R/S ratio was also statistically positively associated with Cd and Ca accumulation in high- and low-Cd cultivars (p < 0.05), both in soil and hydroponics culture. This was mainly due to the lower root biomass of low-Cd cultivars resulted in lower total release of root exudates, lower total Cd and Ca mobilization in rhizosphere soil, and lower total Cd and Ca uptake and transport. The higher shoot biomass of low-Cd cultivars also has dilution effects on Cd concentration in shoot. Overall, low R/S ratio may be regarded as a direct and efficient indicator of low Cd accumulation in the shoot of Chinese flowering cabbage. These findings provided the possibilities to screening low-Cd cultivars using their R/S ratio.


Assuntos
Brassica/metabolismo , Cádmio/farmacocinética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poluentes do Solo/farmacocinética , Brassica/efeitos dos fármacos , Cádmio/análise , Cálcio/farmacocinética , Inocuidade dos Alimentos , Hidroponia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Rizosfera , Solo , Poluentes do Solo/análise
5.
Environ Pollut ; 241: 422-431, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29860158

RESUMO

The present study aimed to investigate the metabolic response of edible amaranth cultivars to salt stress and the induced rhizosphere effects on Cd mobilization in soil. Two edible amaranth cultivars (Amaranthus mangostanus L.), Quanhong (low-Cd accumulator; LC) and Liuye (high-Cd accumulator; HC), were subject to salinity treatment in both soil and hydroponic cultures. The total amount of mobilized Cd in rhizosphere soil under salinity treatment increased by 2.78-fold in LC cultivar and 4.36-fold in HC cultivar compared with controls, with 51.2% in LC cultivar and 80.5% in HC cultivar being attributed to biological mobilization of salinity. Multivariate statistical analysis generated from metabolite profiles in both rhizosphere soil and root revealed clear discrimination between control and salt treated samples. Tricarboxylic acid cycle in root was up-regulated to cope with salinity treatment, which promoted release of organic acids from root. The increased accumulation of organic acids in rhizosphere under salt stress obviously promoted soil Cd mobility. These results suggested that salinity promoted release of organic acids from root and enhanced soil Cd mobilization and accumulation in edible amaranth cultivar in soil culture.


Assuntos
Amaranthus/fisiologia , Cádmio/toxicidade , Metaboloma/fisiologia , Rizosfera , Poluentes do Solo/toxicidade , Ácidos , Amaranthus/metabolismo , Cádmio/análise , Metaboloma/efeitos dos fármacos , Metabolômica , Compostos Orgânicos/metabolismo , Raízes de Plantas/metabolismo , Salinidade , Solo/química , Poluentes do Solo/análise
6.
Environ Pollut ; 224: 89-97, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28262375

RESUMO

This study aimed to investigate the difference of osmoregulation between two edible amaranth cultivars, Liuye (high Cd accumulator) and Quanhong (low Cd accumulator), under salinity stress and determine the effects of such difference on Cd accumulation. A pot experiment was conducted to expose the plants to sewage-irrigated garden soil (mean 2.28 mg kg-1 Cd) pretreated at three salinity levels. Under salinity stress, the concentrations of Cd in the two cultivars were significantly elevated compared with those in the controls, and the Cd concentration in Liuye was statistically higher than that in Quanhong (p < 0.05). Salinity-induced osmoregulation triggered different biogeochemical processes involved in Cd mobilization in the rhizosphere soil, Cd absorption, and translocation by the two cultivars. Rhizosphere acidification induced by an imbalance of cation over anion uptake was more serious in Liuye than in Quanhong, which obviously increased soil Cd bioavailability. Salinity-induced injuries in the cell wall pectin and membrane structure were worse in Liuye than in Quanhong, increasing the risk of Cd entering the protoplasts. The chelation of more cytoplasmic Cd2+ with Cl- ions in the roots of Liuye promoted Cd translocation into the shoots. Furthermore, the less organic solutes in the root sap of Liuye than in that of Quanhong also favored Cd translocation into the shoots. Hence, osmoregulation processes can be regarded as important factors in reducing Cd accumulation in crop cultivars grown on saline soils.


Assuntos
Amaranthus/metabolismo , Cádmio/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Solo/química , Amaranthus/crescimento & desenvolvimento , Osmorregulação , Rizosfera , Salinidade , Cloreto de Sódio/análise , Especificidade da Espécie
7.
Chemosphere ; 157: 262-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236846

RESUMO

Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P < 0.05), with removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P < 0.05). Moreover, prolonged seawater inundation enhanced the release of heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Água do Mar/química , Poluentes do Solo/química , China , Compostos Férricos/química , Compostos Orgânicos/química , Oxirredução , Compostos de Enxofre/química
8.
Environ Sci Pollut Res Int ; 23(8): 7840-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758303

RESUMO

A soil column leaching experiment was conducted to eliminate heavy metals from reclaimed tidal flat soil. Flue gas desulfurization (FGD) gypsum was used for leaching. The highest removal rates of Cd and Pb in the upper soil layers (0-30 cm) were 52.7 and 30.5 %, respectively. Most of the exchangeable and carbonate-bound Cd and Pb were removed. The optimum FGD gypsum application rate was 7.05 kg·m(-2), and the optimum leaching water amount for the application was 217.74 L·m(-2). The application of FGD gypsum (two times) and the extension of the leaching interval time to 20 days increased the heavy metal removal rate in the upper soil layers. The heavy metals desorbed from the upper soil layers were re-adsorbed and fixed in the 30-70 cm soil layers.


Assuntos
Cádmio/química , Cádmio/isolamento & purificação , Sulfato de Cálcio/química , Chumbo/química , Chumbo/isolamento & purificação , Solo/química , Enxofre/química , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação
9.
Environ Geochem Health ; 38(1): 99-110, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25750033

RESUMO

Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.


Assuntos
Organismos Aquáticos/metabolismo , Sedimentos Geológicos/análise , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Disponibilidade Biológica , China , Água Doce/análise , Microscopia Eletrônica de Varredura , Medição de Risco , Águas Salinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...