Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997424

RESUMO

Protease-activated receptors (PARs) are a unique group within the G protein-coupled receptor superfamily, orchestrating cellular responses to extracellular proteases via enzymatic cleavage, which triggers intracellular signaling pathways. Protease-activated receptor 1 (PAR1) is a key member of this family and is recognized as a critical pharmacological target for managing thrombotic disorders. In this study, we present cryo-electron microscopy structures of PAR1 in its activated state, induced by its natural tethered agonist (TA), in complex with two distinct downstream proteins, the Gq and Gi heterotrimers, respectively. The TA peptide is positioned within a surface pocket, prompting PAR1 activation through notable conformational shifts. Contrary to the typical receptor activation that involves the outward movement of transmembrane helix 6 (TM6), PAR1 activation is characterized by the simultaneous downward shift of TM6 and TM7, coupled with the rotation of a group of aromatic residues. This results in the displacement of an intracellular anion, creating space for downstream G protein binding. Our findings delineate the TA recognition pattern and highlight a distinct role of the second extracellular loop in forming ß-sheets with TA within the PAR family, a feature not observed in other TA-activated receptors. Moreover, the nuanced differences in the interactions between intracellular loops 2/3 and the Gα subunit of different G proteins are crucial for determining the specificity of G protein coupling. These insights contribute to our understanding of the ligand binding and activation mechanisms of PARs, illuminating the basis for PAR1's versatility in G protein coupling.

2.
Cell Discov ; 10(1): 58, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38830850

RESUMO

The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.

3.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930955

RESUMO

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Edição de Genes/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores da Topoisomerase/farmacologia , Humanos , Reparo de DNA por Recombinação/efeitos dos fármacos , Técnicas de Introdução de Genes
4.
Bioorg Med Chem ; 107: 117761, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795571

RESUMO

Small-molecule glucagon-like peptide-1 receptor (GLP-1R) agonists are recognized as promising therapeutics for type 2 diabetes mellitus (T2DM) and obesity. Danuglipron, an investigational small-molecule agonist, has demonstrated high efficacy in clinical trials. However, further development of danuglipron is challenged by a high rate of gastrointestinal adverse events. While these effects may be target-related, it is plausible that the carboxylic acid group present in danuglipron may also play a role in these outcomes by affecting the pharmacokinetic properties and dosing regimen of danuglipron, as well as by exerting direct gastrointestinal irritation. Therefore, this study aims to replace the problematic carboxylic acid group by exploring the internal binding cavity of danuglipron bound to GLP-1R using a water molecule displacement strategy. A series of novel triazole-containing compounds have been designed and synthesized during the structure-activity relationship (SAR) study. These efforts resulted in the discovery of compound 2j with high potency (EC50 = 0.065 nM). Moreover, docking simulations revealed that compound 2j directly interacts with the residue Glu387 within the internal cavity of GLP-1R, effectively displacing the structural water previously bound to Glu387. Subsequent in vitro and in vivo experiments demonstrated that compound 2j had comparable efficacy to danuglipron in enhancing insulin secretion and improving glycemic control. Collectively, this study offers a practicable approach for the discovery of novel small-molecule GLP-1R agonists based on danuglipron, and compound 2j may serve as a lead compound to further exploit the unoccupied internal cavity of danuglipron's binding pocket.


Assuntos
Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/química , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química
6.
J Ovarian Res ; 17(1): 99, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730385

RESUMO

With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.


Assuntos
Cromatina , Oócitos , Transcriptoma , Humanos , Oócitos/metabolismo , Cromatina/metabolismo , Cromatina/genética , Feminino , Perfilação da Expressão Gênica , Nucléolo Celular/metabolismo , Nucléolo Celular/genética
7.
Nat Commun ; 15(1): 3252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627384

RESUMO

The adenosine A3 receptor (A3AR), a key member of the G protein-coupled receptor family, is a promising therapeutic target for inflammatory and cancerous conditions. The selective A3AR agonists, CF101 and CF102, are clinically significant, yet their recognition mechanisms remained elusive. Here we report the cryogenic electron microscopy structures of the full-length human A3AR bound to CF101 and CF102 with heterotrimeric Gi protein in complex at 3.3-3.2 Å resolution. These agonists reside in the orthosteric pocket, forming conserved interactions via their adenine moieties, while their 3-iodobenzyl groups exhibit distinct orientations. Functional assays reveal the critical role of extracellular loop 3 in A3AR's ligand selectivity and receptor activation. Key mutations, including His3.37, Ser5.42, and Ser6.52, in a unique sub-pocket of A3AR, significantly impact receptor activation. Comparative analysis with the inactive A2AAR structure highlights a conserved receptor activation mechanism. Our findings provide comprehensive insights into the molecular recognition and signaling of A3AR, paving the way for designing subtype-selective adenosine receptor ligands.


Assuntos
Receptor A3 de Adenosina , Transdução de Sinais , Humanos , Receptor A3 de Adenosina/metabolismo , Microscopia Crioeletrônica
8.
Mol Cell Endocrinol ; 586: 112194, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395189

RESUMO

Aberrant sperm morphology hinders sperm motility and causes male subfertility. Spermatogenesis, a complex process in male germ cell development, necessitates precise regulation of numerous developmental genes. However, the regulatory pathways involved in this process remain partially understood. We have observed the widespread expression of Glyr1, the gene encoding a nucleosome-destabilizing factor, in mouse testicular cells. Our study demonstrates that mice experiencing Glyr1 depletion in spermatogenic cells exhibit subfertility characterized by a diminished count and motility of spermatozoa. Furthermore, the rate of sperm malformation significantly increases in the absence of Glyr1, with a predominant occurrence of head and neck malformation in spermatozoa within the cauda epididymis. Additionally, a reduction in spermatocyte numbers across different meiotic stages is observed, accompanied by diminished histone acetylation in spermatogenic cells upon Glyr1 depletion. Our findings underscore the crucial roles of Glyr1 in mouse spermiogenesis and unveil novel insights into the etiology of male reproductive diseases.


Assuntos
Proteínas Nucleares , Nucleossomos , Oxirredutases , Motilidade dos Espermatozoides , Espermatogênese , Animais , Masculino , Camundongos , Nucleossomos/metabolismo , Sêmen , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas Nucleares/genética , Oxirredutases/genética
9.
Bioorg Chem ; 144: 107132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241768

RESUMO

The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.


Assuntos
Ácido Betulínico , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Hipoglicemiantes/farmacologia , Vesícula Biliar/metabolismo
10.
Eur J Med Chem ; 264: 116017, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070432

RESUMO

The shortage of cholesterol gallstones treatment intensifies the need to discover of effective small molecule drugs. Clinical follow-up and studies have found that activation of somatostatin receptor subtype 5 (SSTR5) reduce gallbladder contraction and thus increase the risk of cholesterol gallstones, implying that antagonizing SSTR5 may promote gallbladder emptying and reduce the formation of gallstones. Herein, we discovered novel SSTR5 antagonists and firstly investigated its effects on cholesterol gallstone. From loperamide, a reported seed structure with micromole activity, we identified optimal compound 23 as an SSTR5 antagonist exhibiting single-digit nanomolar potency, low hERG inhibition and oral availability. Further in vivo evaluation revealed that 23 significantly promoted gallbladder emptying. Moreover, in a mouse cholesterol gallstone model, 23 (3 mg/kg) effectively reduced the cholesterol gallstones formation, showing better efficacy than the clinical first-line drug UDCA (60 mg/kg), providing a new insight into the development of anti-gallstone drugs.


Assuntos
Cálculos Biliares , Animais , Camundongos , Cálculos Biliares/tratamento farmacológico , Receptores de Somatostatina , Colesterol
11.
Acta Pharmacol Sin ; 45(3): 490-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935896

RESUMO

Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17ß-estradiol, and both compounds do activate estrogen receptors Erα and Erß with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erß to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.


Assuntos
Estrenos , Receptor alfa de Estrogênio , Bainha de Mielina , Pirrolidinonas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Colesterol/metabolismo
12.
Bioorg Med Chem ; 96: 117511, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976806

RESUMO

The G protein-coupled receptor 35 (GPR35) has been identified as a potential target in the treatment of inflammatory bowel disease (IBD). However, the lack of high and equipotent agonists on both human and mouse GPR35 has limited the in vivo study of GPR35 agonists in mouse models of IBD. In this study, structural modifications to lodoxamide provides a series of high and equivalent agonists on human, mouse, and rat GPR35. These molecules eliminate the species selectivity of human to mouse and rat orthologs that have been prevalent with GPR35 agonists including lodoxamide. The cLogP properties are also optimized to make the compounds more obedient to drug-like rules, yielding compound 4b (cLogP = 2.41), which activates human, mouse or rat GPR35 with EC50 values of 76.0, 63.7 and 77.8 nM, respectively. Oral administration of compound 4b at 20 mg/kg alleviates clinical symptoms of DSS-induced IBD in mice, and is slightly more effective than 5-ASA at 200 mg/kg. In summary, it can serve as a new start point for exploiting more potent GPR35 agonists without species differences for the treatment of IBD, and warrants further study.


Assuntos
Doenças Inflamatórias Intestinais , Receptores Acoplados a Proteínas G , Ratos , Camundongos , Humanos , Animais , Receptores Acoplados a Proteínas G/agonistas , Ácido Oxâmico/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Administração Oral
13.
Foods ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444339

RESUMO

The quality and starch properties of rice are significantly affected by nitrogen. The effect of the nitrogen application rate (0, 180, and 230 kg ha-1) on the texture of cooked rice and the hierarchical structure and physicochemical properties of starch was investigated over two years using two japonica cultivars, Bengal and Shendao505. Nitrogen application contributed to the hardness and stickiness of cooked rice, reducing the texture quality. The amylose content and pasting properties decreased significantly, while the relative crystallinity increased with the increasing nitrogen rates, and the starch granules became smaller with an increase in uneven and pitted surfaces. The proportion of short-chain amylopectin rose, and long-chain amylopectin declined, which increased the external short-range order by 1045/1022 cm-1. These changes in hierarchical structure and grain size, regulated by nitrogen rates, synergistically increased the setback viscosity, gelatinization enthalpy and temperature and reduced the overall viscosity and breakdown viscosity, indicating that gelatinization and pasting properties were the result of the joint action of several factors. All results showed that increasing nitrogen altered the structure and properties of starch, eventually resulting in a deterioration in eating quality and starch functional properties. A moderate reduction in nitrogen application could improve the texture and starch quality of rice while not impacting on the grain yield.

14.
J Med Chem ; 66(12): 7988-8010, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37286364

RESUMO

Danuglipron is the most representative small-molecule agonist of the glucagon-like peptide-1 receptor (GLP-1R) and has received considerable attention due to positive results in the treatment of type 2 diabetes mellitus (T2DM) and obesity in clinical trials. However, hERG inhibition, lower activity than endogenous GLP-1, and a short action time represent limitations in terms of feasible application. In this study, we report a new class of 5,6-dihydro-1,2,4-triazine derivatives that serve to eliminate potential hERG inhibition caused by the piperidine ring of danuglipron. Applying systematic in vitro to in vivo screening, we have identified compound 42 as a highly potent and selective GLP-1R agonist, which delivers improved (7-fold) efficacy in stimulating cAMP accumulation compared with danuglipron and which exhibits acceptable drug-like properties. Furthermore, 42 significantly reduces glucose excursion and inhibits food intake of hGLP-1R Knock-In mice. These effects are longer-lasting than that shown by danuglipron, demonstrating feasibility in the treatment of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico
15.
Front Cell Dev Biol ; 11: 1191797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255603

RESUMO

Dynamic-related protein 1 (DRP1) is a key protein of mitochondrial fission. In this study, we found that inhibition of activity of DRP1 led to increased levels of cleavage embryo genes in mouse embryonic stem cells (mESCs), which might reflect a transient totipotency status derived from pluripotency. This result indicates that DRP1 inhibition in mESCs leads to a tendency to obtain a new expression profile similar to that of the 2C-like state. Meanwhile, we also noticed that the glycolysis/gluconeogenesis pathway and its related enzymes were significantly downregulated, and the key glycolytic enzymes were also downregulated in various 2C-like cells. Moreover, when DRP1 activity was inhibited from the late zygote when cleavage embryo genes started to express, development of early embryos was inhibited, and these cleavage embryo genes failed to be efficiently silenced at the late 2-cell (2C) stage. Taken together, our result shows that DRP1 plays an important role in silencing cleavage embryo genes for totipotency-to-pluripotency transition.

16.
Eur J Med Chem ; 251: 115267, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933395

RESUMO

GPR40 is primarily expressed in pancreatic islet ß-cells, and its activation by endogenous ligands of medium to long-chain free fatty acids or synthetic agonists is clinically proved to improve glycemic control by stimulating glucose-dependent insulin secretion. However, most of the reported agonists are highly lipophilic, which might cause lipotoxicity and the off-target effects in CNS. Particularly, the withdrawal of TAK-875 from clinical trials phase III due to liver toxicity concern threw doubt over the long-term safety of targeting GPR40. Improving the efficacy and the selectivity, thus enlarging the therapeutic window would provide an alternative to develop safe GPR40-targeted therapeutics. Herein, by employing an innovative "three-in-one" pharmacophore drug design strategy, the optimal structural features for GPR40 agonist was integrated into one functional group of sulfoxide, which was incorporated into the ß-position of the propanoic acid core pharmacophore. As a result, the conformational constraint, polarity as well as chirality endowed by the sulfoxide significantly enhanced the efficacy, selectivity and ADMET properties of the novel (S)- 2-(phenylsulfinyl)acetic acid-based GPR40 agonists. The lead compounds (S)-4a and (S)-4s exhibited robust plasma glucose-lowering effects and insulinotropic action during an oral glucose tolerance test in C57/BL6 mice, excellent pharmacokinetic profile and little hepatobiliary transporter inhibition, marginal cell toxicities against human primary hepatocyte at 100 µM.


Assuntos
Insulina , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Ácidos Carboxílicos/farmacologia , Ácidos Graxos , Glucose , Teste de Tolerância a Glucose , Hipoglicemiantes/química
17.
Adv Sci (Weinh) ; 10(12): e2204794, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36815388

RESUMO

Significantly decreased H3K4 methylation in oocytes from aged mice indicates the important roles of H3K4 methylation in female reproduction. However, how H3K4 methylation regulates oocyte development remains largely unexplored. In this study, it is demonstrated that oocyte-specific expression of dominant negative mutant H3.3-K4M led to a decrease of the level of H3K4 methylation in mouse oocytes, resulting in reduced transcriptional activity and increased DNA methylation in oocytes, disturbed oocyte developmental potency, and fertility of female mice. The impaired expression of genes regulating mitochondrial functions in H3.3-K4M oocytes, accompanied by mitochondrial abnormalities, is further noticed. Moreover, early embryos from H3.3-K4M oocytes show developmental arrest and reduced zygotic genome activation. Collectively, these results show that H3K4 methylation in oocytes is critical to orchestrating gene expression profile, driving the oocyte developmental program, and ensuring oocyte quality. This study also improves understanding of how histone modifications regulate organelle dynamics in oocytes.


Assuntos
Histonas , Dinâmica Mitocondrial , Feminino , Camundongos , Animais , Histonas/genética , Oócitos/metabolismo , Oogênese/genética , Metilação de DNA/genética
19.
Cell Rep ; 41(8): 111644, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417852

RESUMO

Oct4 is exclusively expressed in rodent inner cell mass (ICM) but silenced in its trophectoderm (TE). However, for many non-rodent animals, including pig, cattle, rabbit, goat, and human, OCT4 has a remarkable expression in early TE. This study, applying pig as the main research model, proves that OCT4 expression in TE is supported by a unique GATA motif in the OCT4 upstream conserved regulatory region, and GATA4 is responsible for its activation. Moreover, OCT4 acts as a specific regulator of a narrow range of genes (including BCL2A1 and HNRNP2AB1) that are essential for the first wave of rapid proliferation in early TE. This study describes the regulatory mechanism to direct the OCT4 expression and its significance in TE of porcine preimplantation embryo.


Assuntos
Blastocisto , Roedores , Humanos , Suínos , Animais , Bovinos , Coelhos
20.
Cell ; 185(23): 4361-4375.e19, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368306

RESUMO

Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of µ-opioid receptor (µOR). Here, we report structures of the human µOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of µOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of µOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of µOR, which may facilitate rational design of next-generation analgesics.


Assuntos
Fentanila , Morfina , Humanos , Analgésicos Opioides/farmacologia , Arrestina/metabolismo , Fentanila/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Morfina/farmacologia , Receptores Opioides mu
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...