Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486273

RESUMO

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Assuntos
Bombyx , Lesões Encefálicas Traumáticas , Fibroínas , Células-Tronco Mesenquimais , Células-Tronco Neurais , Nitritos , Elementos de Transição , Ratos , Animais , Fibroínas/metabolismo , Fibroínas/farmacologia , Bombyx/metabolismo , Hidrogéis/farmacologia , Neurônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
2.
Opt Express ; 31(25): 42613-42623, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087631

RESUMO

Spectral imaging is a powerful tool in industrial processes, medical imaging, and fundamental scientific research. However, for the commonly used spatial/spectral-scanning spectral imager, the slow response time has posed a big challenge for its employment in dynamic scenes. In this paper, we propose a spatiotemporal modulation concept and build a simple, low-cost spectral imager by combining a liquid crystal (LC) cell with a commercial color camera. By the synergic effect of temporal modulation of the LC materials and spatial modulation of the Bayer filter in a color camera, high-quality multispectral imaging is successfully demonstrated with a high rate of 8 Hz, far beyond the counterparts. Experimental results show that even with three tuning states of the LC material, optical signals with a 10-nm band can be resolved in the range between 410 and 700 nm by this method, overcoming the tradeoff between spectral resolution and time resolution. As a proof of demonstration, we present its potential usage for metamerism recognition, showing superiority over traditional color cameras with more spectral details. Considering its low cost, miniaturization and monolithic-integration ability on color sensors, this simple approach may bring the spectral imaging technology closer to the consumer market and even to ubiquitous smartphones for health care, food inspection and other applications.

3.
Opt Express ; 31(20): 33435-33448, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859126

RESUMO

Due to a great many superior features of infrared light communication (ILC), like high capacity and strong privacy, ILC is considered a potential candidate for serving the high demands of beyond fifth-generation/sixth-generation (B5G/6 G) communication systems. However, the terminal's limited field-of-view (FOV) induces great difficulty in establishing line-of-sight (LoS) link between the transceiver and the terminal. In this paper, we propose a wide-FOV auto-coupling optical antenna system that utilizes a wide-FOV telecentric lens to collect incident infrared beams and automatically couple them into a specific single-mode-fiber (SMF) channel of fiber array and optical switch. The performance of this optical antenna system is assessed through simulation and manual alignment operation, and validated by automatic alignment results. A coupling loss of less than 10.6 dB within a FOV of 100° for both downstream and upstream beams in C band is demonstrated by the designed system. Furthermore, we establish a bidirectional optical wireless communications (OWC) system employing this antenna and a fiber-type modulating retro-reflector (MRR) system in the terminal. Both 10-Gbps on-off keying (OOK) downstream and upstream transmissions are successfully realized with the FOV of up to 100° in C band where the measured bit-error-rate (BER) is lower than 3.8 × 10-3. To the best of our knowledge, this is a brand-new auto-coupling optical antenna system with the largest FOV in ILC automatic alignment works in terminals that have ever been reported.

4.
Nano Lett ; 23(22): 10441-10448, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37818981

RESUMO

The low performance of sensors based on an all-dielectric metasurface limits their application compared to metallic counterparts. Here, for the first time, an all-dielectric BIC (bound states in the continuum) metasurface is employed for highly sensitive phase interrogation refractive index sensing. The proposed sensor is well analyzed, fabricated, and characterized. Experimentally, a high-performance BIC-based microfluidic sensing chip with a Q factor of 1200 is achieved by introducing symmetry breaking. A refractive index sensor with high figure of merit of 418 RIU-1 is demonstrated, which is beneficial to the phase interrogation. Notably, we measure a record phase interrogation sensitivity of 2.7 × 104 deg/RIU to the refractive index, thus enabling the all-dielectric BIC to rival the refractive index detection capabilities of metal-based sensors such as surface plasmon resonance. This scheme establishes a pivotal role of the all-dielectric metasurface in the field of ultrahigh sensitivity sensors and opens possibilities for trace detection in biochemical analysis and environment monitoring.

5.
Adv Mater ; 33(25): e2008116, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33988260

RESUMO

Processing 2D sheets into desired structures with high precision is of great importance for fabrication and application of their assemblies. Solution processing of 2D sheets from dilute dispersions is a commonly used method but offers limited control over feature size precision owing to the extreme volume shrinkage. Plastic processing from the solid state is therefore a preferable approach to achieve high precision. However, plastic processing is intrinsically hampered by strong interlayer interactions of the 2D sheet solids. Here, a hydroplastic molding method to shape layered solids of 2D sheets with micrometer-scale precision under ambient conditions is reported. The dried 2D layered solids are plasticized by intercalated solvents, affording plastic near-solid compounds that enable local plastic deformation. Such an intercalated solvent-induced hydroplasticity is found in a broad family of 2D materials, for example graphene, MoS2 , and MXene. The hydroplastic molding enables fabrication of complex spatial structures (knurling, origami) and microimprinted tubular structures down to diameters of 390 nm with good fidelity. The method enhances the structural accuracy and enriches the structural diversity of 2D macroassemblies, thus providing a feasible strategy to tune their electrical, optical, and other functional properties.

6.
Opt Express ; 28(15): 21704-21712, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752443

RESUMO

Structural color filters based on all-dielectric materials are considered to be promising alternatives to metal nanostructures due to significant advantages, such as high-quality resonance effects and low losses of Ohmic effects. We demonstrate a polarization tunable color filter based on all-dielectric metasurfaces, which is based on the arrays of asymmetric monocrystalline silicon nanoblocks on the flexible substrate. By adjusting the physical dimensions of nanoblocks, the filter can exhibit a variety of bright transmission colors. Furthermore, the designed dielectric metasurfaces are sensitive to the linear polarization direction of the incident light, thus a wide range of color images can be created by changing the polarization angles. All of the color filter including the dielectric silicon nanoblocks, the overcladding, and the flexible substrate can be delaminated from the handler substrates and the optical property is reconfigurable, which will find applications in the functional color display, polarization detection and imaging, and secured optical tag.

7.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244629

RESUMO

The effect of equal channel angular pressing (ECAP) through the route Bc and aging treatment on the grain structure and properties of the Cu-1Cr-0.2Si alloy was investigated. Microstructure was detected by scanning electron microscopy (SEM), x-ray diffraction (XRD), and electron backscatter diffraction (EBSD) and the mechanical properties and electrical conductivity were tested. Results shown that after ECAP, accompanying the grains refined to nano-and submicron-structure, the Cr particles were gradually spread along the grain boundaries (GBs), aging treatment promoted Cr particles dispersed in the matrix. ECAP greatly increased the ultimate tensile strength (UTS) while having a small effect on the conductivity, and aging treatment increased electrical conductivity. The stable {111}<110> texture after ECAP and the lower dislocation density after aging treatment maybe the main reasons for the high conductivity of the material.

8.
Opt Express ; 27(15): 21646-21651, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510237

RESUMO

We demonstrate an improved approach to integrate various color filters on a chip-scale by using stepwise metal-insulator-metal FP cavities. The cavity is composed of a thick silver mirror, an SU8 gap layer of controlled thickness, and a thin nickel layer. Reflective colors from red to blue can be generated from these filters through a simple UV lithography process. The filters were also fabricated on a flexible substrate which could be incorporated into wearable devices. This method can realize large-scale filter arrays with simple processing and may facilitate the use of structural color filters in displays and sensing.

9.
Sci Rep ; 9(1): 11290, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383889

RESUMO

Cellulose nanocrystals produced by acid hydrolysis of native cellulose form a well-known chiral nematic liquid crystal phase. The mechanism involved in the formation of chirality has been the subject of a vigorous discussion. The pH and concentration dependence of the phase is studied using cellulose nanocrystal droplets within a silicon oil suspension, which allows for convenient real-time microscale manipulation of phase behaviors and properties. We demonstrate the existence of nematic phases at both low and high pH regions consistent with the Stroobants - Lekkerkerker - Odijk theory. Our results confirm electrostatic interactions play a critical role in controlling the strength of the chirality.

10.
Materials (Basel) ; 12(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137642

RESUMO

The effect of Er addition on the fluidity and microstructure transformation of the as-cast and T5 heat-treated ZL205A alloys was investigated by optical microscope (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The fluidity of the liquid metal after adding Er was tested and the fracture characteristics of the material were analyzed. The results indicated that Er was mainly dissolved into an α-Al matrix near the grain boundaries (GBs). It is easily segregated and enriched in the intersection of the GBs or the interface between the α and θ phase, which caused the intermetallic compounds to be distributed along the GBs to the neck and to fuse. Er could also inhibit the diffusion of Cu atoms in the process of solid solution, so that increased the residual eutectic structures in the crystal, while accelerating the precipitation progress of the Guinier-Preston (GP) zone and θ' phase and increasing precipitation of the θ phase. A small amount of precipitation of θ phase and micro-scale Er (0.1-0.5 wt %) can significantly increase the fluidity and reduce the casting defects, which can effectively improve the castability of the ZL205A alloy. The interface between the (Al8Cu4Er) phase and matrix is the main area of microcracks, through analyzing the fracture morphology.

11.
Materials (Basel) ; 12(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744027

RESUMO

High-temperature compression and electron backscatter diffraction (EBSD) techniques were used in a systematic investigation of the dynamic recrystallization (DRX) behavior and texture evolution of the Inconel625 alloy. The true stress⁻true strain curves and the constitutive equation of Inconel625 were obtained at temperatures ranging from 900 to 1200 °C and strain rates of 10, 1, 0.1, and 0.01 s-1. The adiabatic heating effect was observed during the hot compression process. At a high strain rate, as the temperature increased, the grains initially refined and then grew, and the proportion of high-angle grain boundaries increased. The volume fraction of the dynamic recrystallization increased. Most of the grains were randomly distributed and the proportion of recrystallized texture components first increased and then decreased. Complete dynamic recrystallization occurred at 1100 °C, where the recrystallized volume fraction and the random distribution ratios of grains reached a maximum. This study indicated that the dynamic recrystallization mechanism of the Inconel625 alloy at a high strain rate included continuous dynamic recrystallization with subgrain merging and rotation, and discontinuous dynamic recrystallization with bulging grain boundary induced by twinning. The latter mechanism was less dominant.

12.
Biomed Mater ; 9(1): 015014, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24457395

RESUMO

As one of the most important potential candidate alloys for vascular stent application, Mg-Y-Zr based Mg-4.2wt%Y-2.4wt%Nd-0.6wt%Ce(La)-0.5wt%Zr (WE43) alloys were investigated in combination with the forming processes of micro-tubes with 2.0 mm diameter and 0.1 mm wall thickness. Orthogonal experimental design for alloy composition, vacuum melting ingot, heat treatment, integrated plastic deformation and micro-tube forward extrusion are included in the processing procedures. Significant improvements in both the mechanical properties and corrosion resistance in phosphate buffered saline solution for WE43 alloys were achieved through this processing sequence. The influence of the heat treatment and hot extrusion on in vitro degradation and plasticity was found to be associated with grain size reduction and the redistribution of intermetallic particles within the microstructure. As a result, the mechanical properties and the corrosion resistance of Mg alloys can be improved through fine-grain strengthening and solid-solution strengthening to some extent.


Assuntos
Materiais Biocompatíveis/química , Stents , Ligas/química , Corrosão , Temperatura Alta , Magnésio/química , Teste de Materiais , Metais/química , Pressão , Estresse Mecânico , Resistência à Tração , Doenças Vasculares/terapia , Ítrio/química , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...