Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(1): 363-371, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36576433

RESUMO

Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.

2.
ACS Nano ; 16(7): 11268-11277, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848623

RESUMO

2H-1T' MoTe2 van der Waals heterostructures (vdWHs) have promising applications in optoelectronics due to a seamlessly homogeneous semiconductor-metal coupled interface. However, the existing methods to fabricate such vdWHs involved complicated steps that may deteriorate the interfacial coupling and are also lacking precise thickness control capability. Here, a one-step growth method was developed to controllably grow bilayer 2H-1T' MoTe2 vdWHs in the small growth window overlapped for both phases. Atomic-resolution low-voltage transmission electron microscopy shows the distinct moiré patterns in the bilayer vdWHs, revealing the epitaxial nature of the top 2H phase with the lattice parameters regulated by the underneath 1T' phase. Such epitaxially stacked bilayer vdWHs modulate the interlayer coupling by resonating their vibration modes, as unveiled by the angle-resolved polarized Raman spectroscopy and first-principles calculations.

3.
J Chem Phys ; 155(21): 214701, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879663

RESUMO

The wetting state of surfaces can be rendered to a highly hydrophobic state by the deposition of hydrophilic gas phase synthesized Ag nanoparticles (NPs). The aging of Ag NPs leads to an increase in their size, which is also associated with the presence of Ag adatoms on the surface between the NPs that have a strong effect on the wetting processes. Furthermore, surface airborne hydrocarbons were removed by UV-ozone treatment, providing deeper insight into the apparent mobility of the NPs on different surfaces and their subsequent ripening and aging. In addition, the UV-ozone treatment revealed the presence of adatoms during the magnetron sputtering process. This surface treatment lowers the initial contact angle of the substrates and facilitates the mobility of Ag NPs and adatoms on the surface of substrates. Adatoms co-deposited on clean high surface energy substrates will nucleate on Ag NPs that will remain closely spherical and preserve the pinning effect due to the water nanomeniscus. If the adatoms are co-deposited on a UV-ozone cleaned low surface energy substrate, their mobility is restricted, and they will nucleate in two-dimensional islands and/or nanoclusters on the surface instead of connecting to existing Ag NPs. This growth results in a rough surface without overhangs, where the wetting state is reversed from hydrophobic to hydrophilic. Finally, different material surfaces of transmission electron microscopy grids revealed strong differences in the sticking coefficient for the Ag NPs, suggesting another factor that can strongly affect their wetting properties.

4.
ACS Nano ; 13(11): 13430-13438, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31625718

RESUMO

We present here a detailed study of the wettability of surfaces nanostructured with amorphous and crystalline nanoparticles (NPs) derived from the phase-change material Ge2Sb2Te5 (GST). Particular attention was devoted to the effect of airborne surface hydrocarbons on surface wetting. Our analysis illustrates that a reversible hydrophilic-hydrophobic wettability switch is revealed by combined ultraviolet-ozone (UV-O3) treatments and exposure to hydrocarbon atmospheres. Indeed, the as-prepared surfaces exhibited a hydrophilic state after thermal annealing or UV-O3 treatment which can partially remove hydrocarbon contaminants, while a hydrophobic state was realized after exposure to hydrocarbon atmosphere. Using high-angle annular dark-field scanning transmission electron microscopy for the specially designed GST NP decorated graphene substrates, a network of hydrocarbon connecting GST NPs was observed. Our findings indicate that airborne hydrocarbons can significantly enhance the hydrophobicity of nanostructured surfaces. Finally, the experiments reveal that previously defined hydrophilic materials can be used for the design of hydrophobic surfaces even if the meniscus is highly adhered to a solid surface, which is in agreement with our qualitative model involving the contribution of the nanomeniscus formed between the substrate and a decorating NP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...