Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(40): 47425-47433, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37775518

RESUMO

With the rapid development of wearable devices and integrated systems, protection against electromagnetic waves is an issue. For solving the problems of poor flexibility and a tendency to corrode traditional electromagnetic interference (EMI) shielding materials, two-dimensional (2D) nanomaterial MXene was employed to manufacture next-generation EMI shielding materials. Vacuum-assisted filtration combined with the liquid nitrogen prefreezing strategy was adopted to prepare flexible MXene/cellulose nanofibers (CNFs) composite aerogel film with unique cellular structure. Here, CNFs were employed as the reinforcement, and such a cellular structure design can effectively improve the shielding effectiveness (SE). In particular, the composite shows an outstanding EMI SE of 54 dB. Furthermore, the MXene/CNFs composite aerogel film exhibited prominent and steady photothermal conversion ability, which could obtain the maximum equilibrium temperature of 89.4 °C under an 808 nm NIR laser. Thus, our flexible composite aerogel film with appealing cellular construction holds great promise for wearable EMI shielding materials and heating applications in a cold and complex practical environment.

2.
ACS Appl Mater Interfaces ; 15(20): 24933-24947, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37165637

RESUMO

Conductive hydrogels have good prospects in the fields of flexible electronic devices and artificial intelligence due to their biocompatibility, durability, and functional diversity. However, the process of hydrogel polymerization is time-consuming and energy-consuming, and freezing at zero temperature is inevitable, which seriously hinders its applications and working life. Herein, zwitterionic conductive hydrogels with self-adhesive and antifreeze properties were prepared in one minute by introducing two-dimensional (2D) MXene nanosheets into the autocatalytically enhanced system composed of tannic acid-modified cellulose nanofibers and zinc chloride. The system has strong environmental applicability (-60 to 40 °C), good stretchability (ductility ≈ 980%), durable adhesion (even after 30 days of exposure to air), and strong electrical conductivity (20 °C, 30 mS cm-1). By virtue of these advantages, the prepared zwitterionic hydrogels can be developed into flexible strain sensors to monitor large human movements and subtle physiological signals over a wide temperature range and to capture signals from handwriting and voice recognition. In addition, multiple flexible sensors can be assembled into a three-dimensional (3D) array, which can detect the magnitude and spatial distribution of strain or force. These results demonstrate that the prepared zwitterionic hydrogels have promising applications in the fields of medical monitoring and artificial intelligence.

3.
Front Pharmacol ; 13: 995344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120378

RESUMO

Salvia chinensia Benth (Shijianchuan in Chinese, SJC) has been used as a traditional anti-cancer herb. SJC showed good anti-esophageal cancer efficacy based on our clinical application. However, the current research on SJC is minimal, and its anti-cancer effect lacks scientific certification. This study aims to clarify the inhibitory effect of SJC on esophageal cancer and explore its underlying mechanism. Q-Orbitrap high-resolution LC/MS was used to identify the primary chemical constituents in SJC. Cell proliferation and colony formation assays showed that SJC could effectively inhibit the growth of esophageal tumor cells in vitro. To clarify its mechanism of action, proteomic and bioinformatic analyses were carried out by combining tandem mass labeling and two-dimensional liquid chromatography-mass spectrometry (LC-MS). Data are available via ProteomeXchange with identifier PXD035823. The results indicated that SJC could activate AMPK signaling pathway and effectively promote autophagy in esophageal cancer cells. Therefore, we further used western blotting to confirm that SJC activated autophagy in esophageal cancer cells through the AMPK/ULK1 signaling pathway. The results showed that P-AMPK and P-ULK1 were significantly up-regulated after the treatment with SJC. The ratio of autophagosomes marker proteins LC3II/I was significantly increased. In addition, the expression of the autophagy substrate protein P62 decreased with the degradation of autophagosomes. Using lentiviral transfection of fluorescent label SensGFP-StubRFP-LC3 protein and revalidation of LC3 expression before and after administration by laser confocal microscopy. Compared with the control group, the fluorescence expression of the SJC group was significantly enhanced, indicating that it promoted autophagy in esophageal cancer cells. Cell morphology and the formation of autophagosomes were observed by transmission electron microscopy. Our study shows that the tumor suppressor effect of SJC is related to promoting autophagy in esophageal tumor cells via the AMPK/ULK1 signaling pathway.

4.
Zool Res ; 43(5): 851-870, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36031768

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder prevalent in school-age children. At present, however, its etiologies and risk factors are unknown. Transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory protein γ-8 (TARP γ-8, also known as calcium voltage-gated channel auxiliary subunit gamma 8 (CACNG8)) is an auxiliary AMPA receptor (AMPAR) subunit. Here, we report an association between TARP γ-8 and ADHD, whereby adolescent TARP γ-8 knockout (KO) mice exhibited ADHD-like behaviors, including hyperactivity, impulsivity, anxiety, impaired cognition, and memory deficits. Human single-nucleotide polymorphism (SNP) analysis also revealed strong associations between intronic alleles in CACNG8 genes and ADHD susceptibility. In addition, synaptosomal proteomic analysis revealed dysfunction of the AMPA glutamate receptor complex in the hippocampi of TARP γ-8 KO mice. Proteomic analysis also revealed dysregulation of dopaminergic and glutamatergic transmissions in the prefrontal cortices of TARP γ-8 KO mice. Methylphenidate (MPH), which is commonly used to treat ADHD, significantly rescued the major behavioral deficits and abnormal synaptosomal proteins in TARP γ-8 KO mice. Notably, MPH significantly reversed the up-regulation of Grik2 and Slc6a3 in the prefrontal cortex. MPH also significantly improved synaptic AMPAR complex function by up-regulating other AMPAR auxiliary proteins in hippocampal synaptosomes. Taken together, our results suggest that TARP γ-8 is involved in the development of ADHD in humans. This study provides a useful alternative animal model with ADHD-like phenotypes related to TARP γ-8 deficiency, which has great potential for the development of new therapies.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Canais de Cálcio , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Canais de Cálcio/genética , Humanos , Camundongos , Camundongos Knockout , Proteômica
5.
J Colloid Interface Sci ; 608(Pt 1): 820-829, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785459

RESUMO

Sensitive strain sensors have attracted more attention due to their applications in health monitoring and human-computer interaction. However, the problems existing in conventional hydrogels, such as inherent brittleness, freezing at low temperature, low toughness, and water evaporation, have greatly hindered the practical applications. In order to solve the above problems, herein, we designed dual network multifunctionality organohydrogels using polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) covalent cross-linking polymer as the first network, the bacterial celluloses (BCs) and calcium chloride by ligand binding as the second network. The prepared organohydrogels showed good conductivity and sensitivity over a wide temperature range (-20 âˆ¼ 40 ℃), and maintained long-term stability (>15 days) in the air. In addition, the dynamic combination of BCs-Ca2 + and hydrogen bonds in the binary system further endows the organohydrogels with excellent tensile strength (≈1.0 MPa), tensile strain (≈1300%), toughness (≈6.2 MJ m-3), conductivity (3.4 S m-1), gauge factor (≈1.24), adhesion (≈0.3 MPa), and self-healing properties (self-healing tensile strain to 632%). Therefore, this organohydrogel has potential candidates for flexible electronic skin, motion monitoring, and soft robotics.


Assuntos
Celulose , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Hidrogéis , Álcool de Polivinil
6.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 2): m217, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-21581810

RESUMO

In the title compound, [Hg(C(32)H(30)N(4)O)](PF(6))(2)·CH(3)CN, the mercury(II) ion is coordinated by two carbene C atoms [Hg-C = 2.060 (6) and 2.066 (6) Å] and one ether O atom [Hg-O = 2.561 (5) Å] in a distorted T-shaped geometry with a C-Hg-C angle of 166.3 (3)°. One hexa-fluorido-phosphate anion is rotationally disordered between two orientations with an approximate ratio of 2:1. The crystal packing exhibits weak inter-molecular C-H⋯F and C-H⋯N inter-actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...