Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Legal Med ; 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175800

RESUMO

Post-mortem diagnosis of fatal hypothermia (FHT) is challenging in forensic practice because traditional morphological and biochemical methods lack specificity. Recent studies have reported that brown adipose tissue (BAT) is activated during cold-induced non-shivering thermogenesis in mammals, but BAT has not been used to diagnose FHT. The aim of this study was to identify novel biomarkers in BAT for FHT based on morphological changes and differential protein expression. Two FHT animal models were created by exposing mice to 4 or -20 °C at 50% humidity. Morphologically, the unilocular lipid droplet content was significantly increased in BAT of FHT model mice compared with that of control mice. Proteomics analysis revealed a total of 283 and 266 differentially expressed proteins (DEPs) between the 4 or -20 °C FHT subgroups and control group, respectively. In addition, 140 proteins were shared between the FHT subgroups. GO and KEGG analyses revealed that the shared DEPs were mainly enriched in pathways associated with metabolism, oxidative phosphorylation, and thermogenesis. Further screening (|log2FC| > 1.6, q-value (FDR) < 0.05) identified GMFB, KDM1A, DDX6, RAB1B, SHMT-1, CLPTM1, and LMF1 as candidate biomarkers of FHT. Subsequent validation experiments were performed in FHT model mice using classic immunohistochemistry and western blotting. RAB1B and GMFB expression was further verified in BAT specimens from human cases of FHT. The results demonstrate that BAT can be used as a target organ for FHT diagnosis employing RAB1B and GMFB as biological markers, thus providing a new strategy for the post-mortem diagnosis of FHT in forensic practice.

2.
Int J Legal Med ; 134(6): 2149-2159, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32617663

RESUMO

The diagnosis of drowning is one of the major challenges in forensic practice, especially when the corpse is in a state of decomposition. Novel indicators of drowning are desired in the field of forensic medicine. In the past decade, aquatic bacteria have attracted great attention from forensic experts because they can easily enter the blood circulation with drowning medium, and some of them can proliferate in the corpse. Recently, the advent of next-generation sequencing (NGS) has created new opportunities to efficiently analyze whole microbial communities and has catalyzed the development of forensic microbiology. We presumed that NGS could be a potential method for diagnosing drowning. In the present study, we verified this hypothesis by fundamental experiments in drowned and postmortem-submersed rat models. Our study revealed that detecting the bacterial communities with NGS and processing the data in a transparent way with unweighted UniFrac-based principal coordinates analysis (PCoA) could clearly discriminate the skin, lung, blood, and liver specimens of the drowning group and postmortem submersion group. Furthermore, the acquired information could be used to identify new cases. Taken together, these results suggest that we could build a microbial database of drowned and postmortem-submersed victims by NGS and subsequently use a bioinformatic method to diagnose drowning in future forensic practice.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/classificação , Afogamento/diagnóstico , Afogamento/microbiologia , Medicina Legal/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Sangue/microbiologia , Modelos Animais de Doenças , Fígado/microbiologia , Pulmão/microbiologia , Masculino , Ratos , Ratos Sprague-Dawley , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...