Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827309

RESUMO

Background: This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods: RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result: A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion: The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Rhododendron , Estresse Fisiológico , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estresse Fisiológico/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/química , Família Multigênica/genética , Perfilação da Expressão Gênica , Filogenia , Genoma de Planta/genética
2.
PLoS One ; 19(4): e0298194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625916

RESUMO

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Assuntos
Paeonia , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/metabolismo
3.
PeerJ ; 11: e15883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663289

RESUMO

The Apetala2 (AP2) gene family of transcription factors (TFs) play important functions in plant development, hormonal response, and abiotic stress. To reveal the biological functions and the expression profiles of AP2 genes in Hypericum perforatum, genome-wide identification of HpAP2 family members was conducted. Methods: We identified 21 AP2 TFs in H. perforatum using bioinformatic methods; their physical and chemical properties, gene structures, conserved motifs, evolutionary relationships, cis-acting elements, and expression patterns were investigated. Results: We found that based on the structural characteristics and evolutionary relationships, the HpAP2 gene family can be divided into three subclasses: euANT, baselANT, and euAP2. A canonical HpAP2 TF shared a conserved protein structure, while a unique motif 6 was found in HpAP2_1, HpAP2_4, and HpAP2_5 from the euANT subgroup, indicating potential biological and regulatory functions of these genes. Furthermore, a total of 59 cis-acting elements were identified, most of which were associated with growth, development, and resistance to stress in plants. Transcriptomics data showed that 57.14% of the genes in the AP2 family were differentially expressed in four organs. For example, HpAP2_18 was specifically expressed in roots and stems, whereas HpAP2_17 and HpAP2_11 were specifically expressed in leaves and flowers, respectively. HpAP2_5, HpAP2_11, and HpAP2_18 showed tissue-specific expression patterns and responded positively to hormones and abiotic stresses. Conclusion: These results demonstrated that the HpAP2 family genes are involved in diverse developmental processes and generate responses to abiotic stress conditions in H. perforatum. This article, for the first time, reports the identification and expression profiles of the AP2 family genes in H. perforatum, laying the foundation for future functional studies with these genes.


Assuntos
Antineoplásicos , Hypericum , Hypericum/genética , Evolução Biológica , Biologia Computacional , Flores
4.
Toxicol Ind Health ; 34(3): 178-187, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29506457

RESUMO

In this study, we investigated the effect of inhaled mixtures of volatile organic compounds (VOCs) and carbon monoxide (CO) on neuroethology. Fifty 6-week-old male Kunming mice were exposed in five similar static chambers; zero (control) and four different doses of VOC and CO mixtures (G1-G4) for 10 consecutive days and 2 h/day. The compounds and concentrations were as follows: formaldehyde, benzene, toluene, xylene, and CO as 0.10 + 0.11 + 0.20 + 0.20 + 10.00 mg/m3, 0.20 + 0.22 + 0.40 + 0.40 + 20.00 mg/m3, 1.00 + 1.10 + 2.00 + 2.00 + 100.00 mg/m3, and 5.00 + 5.50 + 10.00 + 10.00 + 500.00 mg/m3, respectively, which corresponded to 1, 2, 10, and 50 times the indoor air quality standard in China. Morris water maze and grip strength tests were performed during the exposure experiment. One day following the final exposure, oxidative damage levels, monoamine neurotransmitters, monoamine oxidase (MAO), and morphology of mice brain were analyzed. Escape latency, dopamine, norepinephrine (NE), and serotonin decreased significantly, while total antioxidant capacity, glutathione peroxidase, and MAO increased significantly in G3 and G4. In addition, there were morphological changes and degeneration of neurons in the dentate gyrus regions of the hippocampus in G4. Results showed that the inhaled mixtures of VOCs and CO affected learning and memory of mice. The impairment of monoamine neurotransmitter associated with MAO may be one of the mechanisms of learning and memory impairment of the mice induced by the mixtures of VOCs and CO.


Assuntos
Encéfalo/efeitos dos fármacos , Monóxido de Carbono/toxicidade , Neurotransmissores/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Poluição do Ar em Ambientes Fechados/efeitos adversos , Análise de Variância , Animais , Benzeno , China , Formaldeído , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Monoaminoxidase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Tolueno , Xilenos
5.
Toxicol Appl Pharmacol ; 336: 49-54, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032082

RESUMO

Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products (PPCPs), is a broad antibacterial and antifungal agent found in a lot of consumer products. However, TCS hormone effect mechanism in teleost female fish is not clear. Female Yellow River carp (Cyprinus carpio) were exposed to 1/20, 1/10 and 1/5 LC50 TCS (96h LC50 of TCS to carp) under semi-static conditions for 42days. Vitellogenin (Vtg), 17ß-estradiol (E2), testosterone(T), estrogen receptor (Er), gonadotropin (GtH), and gonadotropin-releasing hormone (GnRH) levels were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we also examined the mRNA expressions of aromatase, GtHs-ß, GnRH, and Er by quantitative real-time PCR (qRT-PCR). The results indicated that 1/5 LC50 TCS induced Vtg in hepatopancreas of female carps by interference with the hypothalamic-pituitary-gonadal (HPG) axis at multiple potential loci through three mechanisms: (a) TCS exposure enhanced the mRNA expression of hypothalamus and gonadal aromatase which converts androgens into estrogens, subsequently increasing serum concentrations of E2 to induce Vtg in hepatopancreas; (b) TCS treatment increased GnRH and GtH-ß mRNA expression and secretion, causing the disturbance of reproductive endocrine and the increase of E2 to induce Vtg in hepatopancreas; (c) TCS exposure enhanced synthesis and secretion of Er, then it bound to Er to active Vtg synthesis. These mechanisms showed that TCS may induce Vtg production in female Yellow River carp by Er-mediated and non-Er-mediated pathways.


Assuntos
Carpas/metabolismo , Disruptores Endócrinos/toxicidade , Estrogênios/toxicidade , Gônadas/efeitos dos fármacos , Hormônios/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Triclosan/toxicidade , Animais , Aromatase/genética , Aromatase/metabolismo , Carpas/genética , Estradiol/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas Hipofisárias/genética , Gonadotropinas Hipofisárias/metabolismo , Gônadas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Hormônios/genética , Sistema Hipotálamo-Hipofisário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Testosterona/metabolismo , Fatores de Tempo , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...