Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oncotarget ; 7(40): 66135-66148, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27623075

RESUMO

BACKGROUND: Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. METHODS: Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. RESULTS: The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ~15 and ~7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. CONCLUSIONS: Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.


Assuntos
Vias Aferentes/fisiologia , Barorreflexo , Neuropeptídeo Y/metabolismo , Pressorreceptores/metabolismo , Caracteres Sexuais , Transmissão Sináptica/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Neurônios/metabolismo , Ovariectomia , Ratos , Receptores de Neuropeptídeo Y/metabolismo , Fatores Sexuais
3.
Neurosci Lett ; 604: 1-6, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26219983

RESUMO

Sexual-dimorphic neurocontrol of circulation has been described in baroreflex due largely to the function of myelinated Ah-type baroreceptor neurons (BRNs, 1st-order) in nodose. However, it remains unclear if sex- and afferent-specific neurotransmission could also be observed in the central synapses within nucleus of solitary track (NTS, 2nd-order). According to the principle of no mixed neurotransmission among afferents and differentiation of Ah- and A-types to iberiotoxin (IbTX) observed in nodose, the 2nd-order Ah-type BRNs are highly expected. To test this hypothesis, the excitatory post-synaptic currents (EPSCs) were recorded in identified 2nd-order BRNs before and after IbTX using brain slice and whole-cell patch. These results showed that, in male rats, the dynamics of EPSCs in capsaicin-sensitive C-types were dramatically altered by IbTX, but not in capsaicin-insensitive A-types. Interestingly, near 50% capsaicin-insensitive neurons in females showed similar effects to C-types, suggesting the existence of Ah-types in NTS, which may be the likely reason why the females had lower blood pressure and higher sensitivity to aortic depressor nerve stimulation via KCa1.1-mediated presynaptic glutamate release from Ah-type afferent terminals.


Assuntos
Vias Aferentes , Tronco Encefálico/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Neurônios/fisiologia , Pressorreceptores/metabolismo , Transmissão Sináptica , Animais , Aorta/inervação , Capsaicina/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Peptídeos/farmacologia , Ratos Sprague-Dawley , Fatores Sexuais , Núcleo Solitário/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...