Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Res ; 36(4): 255-268, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35965435

RESUMO

Amyloids have traditionally been considered pathologic protein aggregates which contribute to neurodegeneration. New evidence however increasingly suggests that non-pathological amyloids are formed in animals during normal development. Amyloid-like aggregate formation was originally thought to be a conserved feature of animal gametogenesis. This hypothesis was based on findings which suggest that regulated amyloid formations govern yeast meiosis by way of meiosis-specific RNA binding proteins. Additional support came from studies which demonstrate that DAZL, a mammalian gametogenesis-specific RNA binding protein, also forms SDS-resistant aggregates in vivo. Here, we report evidence of aggregated BOULE formations, another DAZ family protein, during sperm development. Data suggest that in mouse testis, BOULE forms SDS-resistant amyloid-like aggregates. BOULE aggregate formation correlates with dynamic developmental expression during spermatogenesis but disappeared in Boule knockout testis. We also mapped essential small region in vitro BOULE aggregations, immediately downstream DAZ repeats, and found that aggregations positively correlated with temperature. We also performed enhanced UV cross-linking immunoprecipitation on BOULE aggregates from mouse testes and found that aggregates bind with a large number of spermatogenesis-related mRNAs. These findings provide insight into the amyloidogenic properties of gametogenesis-specific RNA binding proteins as a conserved feature in mammalian reproduction. Further investigation is warranted to understand the functional significance of BOULE amyloid-like formation during mouse spermatogenesis.

2.
Appl Biochem Biotechnol ; 187(3): 677-690, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30039473

RESUMO

Lotus seed epicarp, a byproduct of lotus seed production process, is usually discarded as a waste. In this study, antioxidant and anti-α-amylase activities of freeze-dried water and various methanol extracts of lotus seed epicarp were evaluated. The extract obtained by 80% methanol exhibited the strongest DPPH and ABTS radical scavenging activity and ferric reducing power, as well as the greatest inhibitory potential on α-amylase. The excellent antioxidant and α-amylase inhibitory activities of 80% methanol extract might be attributed to its highest concentrations of total phenolics, flavonoids, and condensed tannins. The inhibition kinetic analysis revealed that the 80% methanol extract was a reversible and uncompetitive-type inhibitor of α-amylase. Furthermore, based on MALDI-TOF-MS and thiolysis-HPLC-ESI-MS, the main active components present in 80% methanol extract were identified to be B-type heteropolymeric condensed tannins built up of mixtures of propelargonidins, procyanidins, and prodelphinidins, with the predominance of procyanidins and epicatechin as the main constitutive units. The results obtained suggested that lotus seed epicarp could be exploited as a potential source of natural antioxidants and α-amylase inhibitors.


Assuntos
Lotus/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Sementes/química , alfa-Amilases/antagonistas & inibidores , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Metanol/química , Extratos Vegetais/isolamento & purificação , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...