Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Opt Lett ; 49(13): 3741-3744, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950256

RESUMO

In general, delay operation is the most time-consuming stage in frequency-resolved optical gating (FROG) technology, which limits the use of FROG for high-speed measurement of ultrashort laser pulses. In this work, we propose and demonstrate the reconstruction of ultrashort optical pulses by employing the sequence-to-sequence (Seq2Seq) model with attention, theoretically. To our knowledge, this is the first deep learning framework capable of accurately reconstructing ultrashort pulses using very partial spectrograms. The root mean squared error (RMSE) of the pulse amplitude reconstruction and phase reconstruction on the overall test dataset are 9.5 × 10-4 and 0.20, respectively. Compared with the classic FROG recovery algorithm based on two-dimensional phase retrieval algorithms, the use of our model can shorten the spectral measurement time to 1/8 of the original time or even less. Meanwhile, the time required for pulse reconstruction using our model is roughly 0.2 s. To our knowledge, the pulse reconstruction speed of our model exceeds all current iteration-based FROG recovery algorithms. We believe that this study can greatly facilitate the use of FROG for high-speed measurements of ultrashort pulses.

2.
Cells ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38995000

RESUMO

Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.


Assuntos
Medula Óssea , Eritropoese , Feto , Fígado , Transcriptoma , Animais , Eritropoese/genética , Camundongos , Fígado/metabolismo , Fígado/embriologia , Fígado/citologia , Transcriptoma/genética , Feto/metabolismo , Feto/citologia , Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no Desenvolvimento , Feminino , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/citologia
3.
Food Chem ; 457: 140102, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905823

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely used for microbial analysis. However, due to the impenetrable shell of fungi the direct identification of fungi remains challenges. Targeting on this problem, the yeast Saccharomyces cerevisiae (S. cerevisiae) was selected as a model fungus, and a new fungal cell membrane disruption reagent C18-G1 was used before MALDI-MS detection. As a result, much more intensive peaks which distributed in wider m/z range of S. cerevisiae have been identified in comparison with the use of traditional fungal pretreatment methods. Furthermore, a differential peak at m/z 4993 between two subspecies of S. cerevisiae has been identified. The corresponding protein with exclusive sequence of the specific peak was obtained based on MS/MS fragments and database searching. In addition, the method was successfully applied for the discrimination of four commercial yeasts.

4.
Anal Chem ; 96(12): 4884-4890, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38494753

RESUMO

The parallel double-stranded DNA (dsDNA) demonstrates potential utility in molecular biology, diagnosis, therapy, and molecular assembly. However, techniques for the characterization of parallel dsDNA are limited. Here, we demonstrate that a series of intensive characteristic Raman bands of three parallel dsDNAs, which are stabilized by reverse Hoogsteen A+·A+ base pairs or hemiprotonated C+·C, G·G minor groove edge, Hoogsteen A·A base pairs, or Hoogsteen T·A, C+·G base pairs, have been observed by surface-enhanced Raman spectroscopy (SERS) when the gold nanoparticles modified by bromine and magnesium ions (Au BMNPs) were used as substrates. The featured bands can not only accurately discriminate parallel dsDNA from antiparallel one but also identify the strand orientation within dsDNA. The proposed approach will have a significant impact on DNA analysis, especially in the detection and differentiation of various DNA conformations.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Análise Espectral Raman , Brometos , Nanopartículas Metálicas/química , DNA/química
5.
Sci Total Environ ; 912: 168923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065485

RESUMO

Cadmium (Cd) is a pervasive environmental pollutant. Increasing evidence suggests that Cd exposure during pregnancy can induce adverse neurodevelopmental outcomes. However, due to the limitations of neural cell and animal models, it is challenging to study the developmental neurotoxicity and underlying toxicity mechanism of long-term exposure to environmental pollutants during human brain development. In this study, chronic Cd exposure was performed in human mature cerebral organoids for 49 or 77 days. Our study found that prolonged exposure to Cd resulted in the inhibition of cerebral organoid growth and the disruption of neural differentiation and cortical layer organization. These potential consequences of chronic Cd exposure may include impaired GFAP expression, a reduction in SOX2+ neuronal progenitor cells, an increase in TUJ1+ immature neurons, as well as an initial increase and a subsequent decrease in both TBR2+ intermediate progenitors and CTIP2+ deep layer cortical neurons. Transcriptomic analyses revealed that long-term exposure to Cd disrupted zinc and copper ion homeostasis through excessive synthesis of metallothionein and disturbed synaptogenesis, as evidenced by inhibited postsynaptic protein. Our study employed mature cerebral organoids to evaluate the developmental neurotoxicity induced by long-term Cd exposure.


Assuntos
Poluentes Ambientais , Células-Tronco Neurais , Gravidez , Animais , Feminino , Humanos , Cádmio/metabolismo , Neurônios , Zinco/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Organoides/metabolismo
6.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38127913

RESUMO

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Assuntos
Anemia Falciforme , Eritropoese , Camundongos , Animais , Humanos , Eritropoese/fisiologia , Fator de Transcrição STAT5/metabolismo , Hemólise , Hemina/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Anemia Falciforme/complicações
7.
Artigo em Inglês | MEDLINE | ID: mdl-37657739

RESUMO

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and this up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.

8.
Adv Sci (Weinh) ; 10(29): e2301004, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37635166

RESUMO

A high-density Raman photometry based on a dual-recognition strategy is created for accurately quantifying acetylcholinesterase (AchE) activity in 24 brain regions of free-moving animals with network. A series of 5-ethynyl-1,2,3,3-tetramethyl-based molecules with different conjugated structures and substitute groups are designed and synthesized for specific recognition of AchE by Raman spectroscopy. After systematically evaluating the recognition ability toward AchE, 2-(4-((4-(dimethylamino)benzoyl)oxy)styryl)-5-ethynyl-1,3,3-trimethyl-3H-indol-1-ium (ET-5) is finally optimized for AchE determination, which shows the highest selectivity, the greatest sensitivity, and the fastest response time among the investigated seven molecules. More interestingly, using the developed probe for AchE with high accuracy and sensitivity, the optimized AchE regulated by nitric oxide (NO) is discovered for promoting the neurogenesis of neural stem cells (NSCs). Benefiting from the high-density photometry, it is found that the activity and distribution of AchE varied in 24 brain regions, and the levels of AchE activity in 24 brain regions of Alzheimer's mice (AD) are lower than those of normal mice. It is the first time that a functional network of AchE in 24 brain regions is established. It is also found that the loss of AchE functional network in AD mice is restored and reconstructed by the controlled release of AchE regulated by NO.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Camundongos , Animais , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Fotometria
9.
J Inorg Biochem ; 247: 112333, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480763

RESUMO

The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal­ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with ß-carboline as ligands: [Ru (phen)2(NO2-Ph-ßC)](PF6) (RußC-7) and [Ru(phen)2(1-Ph-ßC)](PF6) (RußC-8). In vitro experimental results showed that RußC-7 and RußC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RußC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RußC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.


Assuntos
Complexos de Coordenação , Rutênio , Humanos , Células HeLa , Rutênio/farmacologia , Apoptose , Proliferação de Células , Complexos de Coordenação/farmacologia
10.
J Inorg Biochem ; 246: 112295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348172

RESUMO

Two new ruthenium(II) complexes [Ru(dip)2(PPßC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPßC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with ß-carboline derivative PPßC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 µM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Células A549 , Rutênio/farmacologia , Rutênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias/metabolismo , Apoptose , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
11.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204038

RESUMO

Natural products and metals play a crucial role in cancer research and the development of antitumor drugs. We designed and synthesized three new carboline-based cyclometalated iridium complexes [Ir(C-N)2(PPßC)](PF6), where PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide, C-N = 2-phenylpyridine (ppy, Ir1), 2-(2,4-difluorophenyl) pyridine (dfppy, Ir2), 7,8-benzoquinoline (bzq, Ir3), by combining iridium with ß-carboline derivative. These iridium complexes exhibited high potential antitumor effects after being promptly taken up by A549 cells. Accumulating in mitochondria rapidly and preferentially, Ir1-3 caused a series of changes in mitochondrial events, including the loss of mitochondrial membrane potential, the depletion of cellular ATP, and the elevation of reactive oxygen species, leading to significant death of A549 cells. Moreover, the activation of intracellular caspase pathway and apoptosis was further validated to contribute to iridium complexes-induced cytotoxicity. These novel iridium complexes exerted a prominent inhibitory effect on tumor growth in a three-dimensional multicellular tumor spheroid model.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Irídio/farmacologia , Neoplasias Pulmonares/patologia , Antineoplásicos/metabolismo , Carbolinas/farmacologia , Carbolinas/metabolismo , Apoptose , Mitocôndrias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células
12.
Ultrasonics ; 127: 106857, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36183495

RESUMO

Acoustic transducers with graphene film have high sensitivity and wide bandwidth of frequency response as receivers. However, they exist in transmitting mode with low radiation performance. We propose an effective approach to enhance radiation performance of the graphene acoustic transducer by embedding a coil in insulating layer, and investigate the characteristics of graphene acoustic transducers by experiments. A graphene acoustic transducer is designed and fabricated. The highest receiving sensitivity of the transducer is -30 dB. The output sound pressure level of the transducer is more than 3 dB on average in the range of 2 âˆ¼ 16 kHz compared without a coil. And the sound pressure level increases by 6 dB on average in the range of 40 âˆ¼ 45 kHz. These results demonstrate that the graphene transducer maintains high receiving performance, and also improves acoustic radiation performance, which greatly expands its application field.

13.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433288

RESUMO

The Maglev motor has the characteristics of high-speed and high-power density, and is widely used in compressors, molecular pumps and other high-speed rotating machinery. With the requirements of miniaturization and high speed of rotating machinery, the rotor of the maglev motor will operate above the bending critical speed, and the critical vibration control of the flexible rotor is facing challenges. In order to solve the problem of the critical vibration suppression of the maglev high-speed motor, the system model of the maglev motor is established, the rotordynamics of the flexible rotor are analyzed and the rotor model is modal truncated to reduce the order. Then, the µ-controller is designed, and the weighting functions are designed to deal with the modal uncertainty. Finally, an experimental platform of the maglev motor with the flexible rotor is built to verify the effect of the µ-control on the suppression of the critical vibration of the maglev rotor.


Assuntos
Coração Auxiliar , Vibração , Desenho de Equipamento , Magnetismo , Modalidades de Fisioterapia
14.
Phytother Res ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433866

RESUMO

In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.

15.
Int J Biol Macromol ; 222(Pt B): 2948-2956, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243165

RESUMO

G-quadruplexes (G4s) regulate a variety of physiological functions related to diseases and life elongation. Therefore, G4 binding ligands, such as potential drugs in gene therapy or molecular probes for biosensing and bioimaging, are receiving extensive attention. However, identifying the binding modes and interaction details between G4s and their ligands is very challenging. Recently, we demonstrated that surface-enhanced Raman scattering (SERS) could quickly provide structural details of G4s. Herein, three G4 binding ligands that interact with the separated G4 in different ways are selected as models to evaluate the feasibility of SERS analysis in studying G4-ligand interactions. As a result, adequate SERS information indicating the specific interactions between the G4s and the ligand is obtained via using Ag IANPs as substrates. The results demonstrate that SERS is a powerful tool for revealing comprehensive and specific ligand-DNA interactions with advantages such as speed, simplicity, trace sample amount requirement, and compatibility with aqueous samples.


Assuntos
Quadruplex G , Ligantes , Análise Espectral Raman/métodos , DNA/química
16.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2409-2418, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35531688

RESUMO

In recent years, liver fibrosis has become a hotspot in the field of liver diseases. MicroRNA(miRNA)-mediated Nod-like receptor pyrin domain containing 3(NLRP3) inflammasome activation is pivotal in the pathogenesis of liver fibrosis. The present study mainly discussed the role of miRNA-mediated NLRP3 inflammasome activation in the pathogenesis of liver fibrosis. Different miRNA molecules regulated liver fibrosis by mediating NLRP3 inflammasome activation, including miRNA-350-3 p(miR-350-3 p)/interleukin-6(IL-6)-mediated signal transducer and activator of transcription 3(STAT3)/c-myc signaling pathway, miR-148 a-induced autophagy and apoptosis of hepatic stellate cells via hedgehog signaling pathway, miR-155-mediated NLRP3 inflammasome by the negative feedback of the suppressor of cytokine signaling-1(SOCS-1), miR-181 a-mediated downstream NLRP3 inflammatory pathway activation through mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated kinase(ERK)/nuclear transcription factor κB(NF-κB) inflammatory pathway, miR-21-promoted expression of NF-κB and NLRP3 of RAW264.7 cells in mice by inhibiting tumor necrosis factor-α inducible protein 3(A20), and miR-20 b-promoted expression of IL-1ß and IL-18 by activating NLRP3 signaling pathway. Additionally, the anti-liver fibrosis mechanism of different active components in Chinese medicines(such as Curcumae Rhizoma, Glycyrrhizae Radix et Rhizoma, Aurantii Fructus, Polygoni Cuspidati Rhizoma et Radix, Moutan Cortex, Paeoniae Radix Alba, Epimedii Folium, and Cinnamomi Cortex) was also explored based on the anti-liver fibrosis effect of miRNA-mediated NLRP3 inflammasome activation.


Assuntos
Inflamassomos , MicroRNAs , Animais , Proteínas Hedgehog , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-6 , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Medicina Tradicional Chinesa , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
17.
Phys Chem Chem Phys ; 24(17): 10311-10317, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437563

RESUMO

Intramolecular interactions are key factors for constructing the secondary conformations of biomolecules and they are also vital for biomolecular functions. Their effect on the surface-enhanced Raman spectroscopy (SERS) spectra is also important for reliable label-free detection. The current work focuses on three GCGC-quadruplexes as model molecules for SERS studies, which contain both the G-quartet and the GCGC-quartet. Their spectra are compared with the ones of the G-quadruplex and the duplex. The present work presents the specific effect of intramolecular interactions, including various Watson-Crick and Hoogsteen hydrogen bonds as well as base stacking, on the SERS signals of closely-related secondary conformations. The overall results indicated a significant influence on the direct label-free detection of DNA molecules and the SERS capability for secondary structural analysis.


Assuntos
Quadruplex G , DNA/química , Ligação de Hidrogênio , Análise Espectral Raman/métodos
18.
Eur J Med Chem ; 236: 114335, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398732

RESUMO

Targeted therapy showed broad application prospects in the treatment of various types of cancer. Through carriers such as aptamers, antibodies, proteins and peptides, targeted therapy can selectively deliver drugs into tumor cells. Compared with traditional treatment methods such as chemo- and radiotherapy, targeted drug delivery systems can reduce the toxic effects of drugs on normal cells and avoid adverse reactions. Herein, an aptamer-cyclometalated iridium(III) complex conjugate (ApIrC) has been designed and developed as a targeted anticancer agent. Owing to the targeting ability of aptamers, ApIrC specifically bound to nucleolin over-expressed on the surface of cancer cells and showed strong fluorescence signal for tumor imaging and diagnosis. ApIrC had more substantial cellular uptake in cancer cells than the iridium complex alone and exhibited favorable low toxicity to normal cells. After uptake by cells through endocytosis, ApIrC can selectively accumulated in mitochondria and induced caspase-3/7-dependent cell death. Remarkably, ApIrC can also specifically target 3D multicellular spheroids (MCSs) and show excellent tumor permeability. So, it can effectively reach the interior of MCSs and cause cell damage. To our knowledge, this is the first report of the aptamer-cyclometalated iridium(III) complex conjugate which studied for cancer targeted therapy. The developed conjugate has great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Irídio/farmacologia , Mitocôndrias , Neoplasias/tratamento farmacológico
19.
J Cell Mol Med ; 26(8): 2404-2416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35249258

RESUMO

Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self-renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS-derived erythroid cells is limited and the enucleation of ES/iPS-derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell-derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell-derived orthochromatic erythroblasts (ES-ortho), we found the chromatin of ES-ortho was less condensed than that of CB CD34+ cell-derived orthochromatic erythroblasts (CB-ortho). At the molecular level, both RNA-seq and ATAC-seq analyses revealed that pathways involved in chromatin modification were down-regulated in ES-ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES-ortho compared to that in CB-ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell-derived erythroid cells and may help to improve ex vivo RBC production from stem cells.


Assuntos
Eritropoese , Sangue Fetal , Antígenos CD34/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Eritroides , Humanos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121161, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306309

RESUMO

The direct characterization of DNA nanogels at the atomic level is desirable and of great significance, however, has been challenging because of structural complexity and the larger size of nanogels. Herein, we demonstrated a simple, sensitive and reliable SERS (Surface-enhanced Raman spectroscopy)-based approach towards direct monitoring microstructures, such as three types of nanogels crosslinked by DNA G-quadruplex, i-motif and GC duplex. The achievement is attributed to the detection of featured Raman bands corresponding to the formation of Watson-Crick and Hoogsteen hydrogen bonds as well as C·C+ base pairs. Importantly, this work reveals that the silver nanoparticles attaching on the surface of nanogels can form local 'hotspots' and produce high-quality of Raman spectra under the assistance of iodide, aluminum ions and dichloromethane, therefore, shows great potential for wide applications in accurate characterization of various DNA nanostructures.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , DNA/química , Iodetos , Nanopartículas Metálicas/química , Nanogéis , Prata/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...