Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 838618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572554

RESUMO

Purpose: Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods: The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results: PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion: TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.


Assuntos
Choque Hemorrágico , Animais , Linfócitos T CD4-Positivos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , RNA Mensageiro , Choque Hemorrágico/complicações , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like
2.
J Surg Res ; 203(1): 47-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27338534

RESUMO

BACKGROUND: Vascular hyperpermeability plays a critical role in the development of refractory hypotension after severe hemorrhagic shock. Posthemorrhagic shock mesenteric lymph (PHSML) return has been shown to be involved in regulation of vascular hyperpermeability. The present study was conducted to investigate the effect of PHSML on permeability of endothelial cells in vitro. MATERIALS AND METHODS: A hemorrhagic shock model (40 ± 2 mm Hg for 90 min, followed by fluid resuscitation) was used for collection of PHSML. Two separated PHSMLs were collected from period 0-3 h (early) and period 3-6 h (late) after resuscitation and diluted into concentration of 4% or 10%. The human umbilical vein endothelial cells (HUVECs) were then treated with these PHSMLs for 6 h. The monolayer cellular permeability to FITC-albumin was observed by using the costar transwell system. The multiple approaches including scanning electron microscope, fluorescent cytochemistry staining, and Western blotting were also used to assess the changes in cellular morphologic and the expressions of F-actin and VE-cadherin. RESULTS: The treatments with either early or late PHSML resulted in morphologic injuries, increased cellular permeability, and decreased expression of F-actin in HUVECs. In contrast, only early PHSML, but not late PHSML, reduced the VE-cadherin expression. CONCLUSIONS: These results indicate that the PHSML in vitro increases the cellular permeability of HUVECs through suppression of F-actin and VE-cadherin.


Assuntos
Actinas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linfa/metabolismo , Choque Hemorrágico/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Humanos , Masculino , Microscopia Eletroquímica de Varredura , Ratos , Ratos Wistar , Choque Hemorrágico/fisiopatologia
3.
Asian J Androl ; 14(4): 536-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580637

RESUMO

Persistent activation of Survivin and its overexpression contribute to the formation, progression and metastasis of several different tumor types. Therefore, Survivin is an ideal target for RNA interference mediated-growth inhibition. Blockade of Survivin using specific short hairpin RNAs (shRNA) can significantly reduce prostate tumor growth. RNA interference does not fully ablate target gene expression, owing to the idiosyncrasies associated with shRNAs and their targets. To enhance the therapeutic efficacy of Survivin-specific shRNA, we employed a combinatorial expression of Survivin-specific shRNA and gene associated with retinoid-interferon-induced mortality-19 (GRIM-19). Then, the GRIM-19 coding sequences and Survivin-specific shRNAs were used to create a dual expression plasmid vector and were carried by an attenuated strain of Salmonella enteric serovar typhimurium (S. typhimurium) to treat prostate cancer in vitro and in vivo. We found that the co-expressed Survivin-specific shRNA and GRIM-19 synergistically and more effectively inhibited prostate tumor proliferation and survival, when compared with treatment with either single agent alone in vitro and in vivo. This study has provided a novel cancer gene therapeutic approach for prostate cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma/terapia , Terapia Genética , Proteínas Inibidoras de Apoptose/metabolismo , NADH NADPH Oxirredutases/metabolismo , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Carcinoma/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos , NADH NADPH Oxirredutases/genética , Plasmídeos , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonella typhimurium , Survivina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA