Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173239, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750742

RESUMO

Biofloc technology (BFT) is an eco-friendly aquaculture model that utilizes zero-exchange water. In this study, we investigated the integration of duckweed into BFT in an effort to enhance nitrogen, phosphorus, and carbon utilization and to improve animal welfare for cultivating Megalobrama amblycephala. The experiment spanned 75 days, comparing a group of M. amblycephala supplemented with duckweed (DM) to a control group (CG) with no supplementation, where duckweed consumption relied solely on the feeding behavior of the fish. The concentrations of nitrate, total nitrogen, and phosphorus accumulation were lower in the DM than in the CG from day 45 onwards, with differences of 16.19, 26.90, and 1.45 mg/L, respectively, at the end of the experiment. The DM showed simultaneous increases of 5.77, 11.20, and 5.07 % in the absolute utilization of nitrogen, phosphorus, and carbon, respectively. The abundance of TM7a (10.27 %), linked to nitrate absorption, became the dominant genus in the water of the DM. Additionally, the abundance of Cetobacterium, associated with carbohydrate digestion, was significantly higher in gut of the DM (23.83 %) than in the gut of CG (1.24 %, P < 0.05). Supplementing the diet of M. amblycephala with duckweed improved digestion and antioxidant enzyme activity. Transcriptome data showed that duckweed supplementation resulted in an increase in the expression of genes related to protein digestion and absorption and carbohydrate metabolism in M. amblycephala, and analysis of the significantly enriched pathways further supported improved antioxidant capacity. Based on the above results, we concluded that as M. amblycephala consumes more duckweed, the differences in nitrogen and phosphorus levels between the DM and CG would continue to increase, along with a simultaneous increase in fixed carbon. Thus, this study achieved the goal of recycling BFT resources and improving animal welfare by integrating duckweed.


Assuntos
Aquicultura , Araceae , Nitrogênio , Fósforo , Animais , Nitrogênio/metabolismo , Fósforo/análise , Aquicultura/métodos , Bem-Estar do Animal , Ração Animal/análise
2.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
3.
J Adv Res ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565403

RESUMO

BACKGROUND: Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW: This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW: The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.

4.
Sci Total Environ ; 901: 165921, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527718

RESUMO

Microplastics (MPs) are abundant in aquaculture water, including in bioflocs aquaculture systems. Compared with other aquaculture systems, biofloc technology systems have the richest microbes and are beneficial to cultivated organisms. Therefore, this study provides a comprehensive assessment of the potential effects of MPs on aquaculture organisms in bioflocs systems. Here, Nile Tilapia (Oreochromis niloticus) were exposed to MPs (polystyrene; 32-40 µm diameter) with 0, 80 items/L (30 µg/L), and 800 items/L (300 µg/L) for 28 days in a bioflocs aquaculture system. The results showed that the MPs generally had no apparent effect on water quality, tilapia growth, or digestive enzyme activity. However, MPs accumulated the most in the liver (5.65 ± 0.74 µg/mg) and significantly increased the hepato-somatic index of tilapia and reduced the crude protein and lipid of tilapia muscle (p < 0.05). The levels of the antioxidant enzymes catalase and glutathione S-transferase increased significantly in response to MPs (p < 0.05). In contrast, MPs did not affect the content of glutathione, glutathione peroxidase, oxidized glutathione, and malondialdehyde, or the enzyme activity of Na+/K+-ATPase. Moreover, using an improved integrated biomarker response index, growth performance was found to be less responsive to MPs than to oxidative stress and digestive activity. Exposure to MPs did not significantly influence the microbial communities of the bioflocs and tilapia guts (p < 0.05). These results suggest that MPs barely affected tilapia in the bioflocs system. This study contributes to the evaluation of the ecological risk of MPs in aquaculture systems and a better understanding of the integrated response of cultivated vertebrates to MPs in biofloc technology systems.

5.
Int Immunopharmacol ; 114: 109507, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462336

RESUMO

Acute gouty arthritis (AGA) has been classified as an autoinflammatory disease caused by deposition of monosodium urate crystals (MSU), accompanied by swellingofjoint and severe pain. Limited clinical therapy and highincidence indicate that the development of effective drugs for AGA is an urgent need. Our previous study found that P2Y14 receptor (P2Y14R) was a potential target in anti-gout treatment through regulating pyroptosis of macrophages under exposure of MSU. Based on previous work, we carried out further structure modifications and led to a more effective antagonist HQL6 with IC50 of 3.007 nM. Extensive profiling of HQL6 has demonstrated that its high selectivity, good pharmacokinetic properties, and reliable in vivo anti-gout efficacy. Moreover, P2Y14R has been demonstrated to be the key target of HQL6 since the diminished effects on adenylate cyclase inhibitor-induced acute gouty arthritis in P2Y14R knockout rats. More importantly, results of single point mutant experiments exhibited that HQL6 might interact with Lys277 as favorable residue in the binding pocket of P2Y14R. Therefore, we confirmed that P2Y14R was a promising drug target for AGA, and HQL6 would be an available candidate for further drug development.


Assuntos
Artrite Gotosa , Gota , Ratos , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Piroptose , Ácido Úrico/metabolismo , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...