Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136575

RESUMO

The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.


Assuntos
Dermatopatias , Via de Sinalização Wnt , Adulto , Humanos , Pele/metabolismo , Cicatrização/fisiologia , Dermatopatias/metabolismo , Células-Tronco
2.
Burns Trauma ; 11: tkad030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936894

RESUMO

Background: In plastic surgery, tissue expansion is widely used for repairing skin defects. However, low expansion efficiency and skin rupture caused by thin, expanded skin remain significant challenges in promoting skin regeneration during expansion. S100 calcium-binding protein A9 (S100A9) is essential in promoting wound healing; however, its effects on skin regeneration during tissue expansion remain unclear. The aim of the present study was to explore the role of S100A9 in skin regeneration, particularly collagen production to investigate its importance in skin regeneration during tissue expansion. Methods: The expression and distribution of S100A9 and its receptors-toll-like receptor 4 (TLR-4) and receptor for advanced glycation end products were studied in expanded skin. These characteristics were investigated in skin samples of rats and patients. Moreover, the expression of S100A9 was investigated in stretched keratinocytes in vitro. The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed. TAK-242 was used to inhibit the binding of S100A9 to TLR-4; the levels of collagen I (COL I), transforming growth factor beta (TGF-ß), TLR-4 and phospho-extracellular signal-related kinase 1/2 (p-ERK1/2) in fibroblasts were determined. Furthermore, fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I, TGF-ß, TLR-4 and p-ERK1/2 in fibroblasts were investigated. Additionally, the area of expanded skin, thickness of the dermis, and synthesis of COL I, TGF-ß, TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin. Results: Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix (ECM) in the expanded dermis. Furthermore, S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-ß in fibroblasts via the TLR-4/ERK1/2 pathway. We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I, TGF-ß, TLR-4 and p-ERK1/2 expression in skin fibroblasts. Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion. Conclusions: These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression. Our study laid the foundation for clinically improving tissue expansion using S100A9.

3.
Biomolecules ; 13(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979447

RESUMO

TRPV3 is a non-selective cation channel that is highly expressed in keratinocytes in the skin. Traditionally, keratinocytes-expressed TRPV3 is involved in multiple physiological and pathological functions of the skin, such as itching, heat pain, and hair development. Although the underlying mechanisms by which TRPV3 functions in vivo remain obscure, recent research studies suggest that several cytokines and EGFR signaling pathways may be involved. However, there have also been other studies with opposite results that question the role of TRPV3 in heat pain. In addition, an increasing number of studies have suggested a novel role of TRPV3 in promoting skin regeneration, indicating that TRPV3 may become a new potential target for regulating skin regeneration. This paper not only reviews the role of keratinocytes-expressed TRPV3 in the physiological and pathological processes of itching, heat pain, hair development, and skin regeneration, but also reviews the relationship between TRPV3 gene mutations and skin diseases such as atopic dermatitis (AD) and Olmsted syndrome (OS). This review will lay a foundation for further developing our understanding of the mechanisms by which TRPV3 is involved in itching, heat pain, and hair development, as well as the treatments for TRPV3-related skin diseases.


Assuntos
Pele , Canais de Cátion TRPV , Humanos , Dermatite Atópica/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Queratinócitos/metabolismo , Prurido/metabolismo , Pele/metabolismo , Dermatopatias/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
4.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077018

RESUMO

Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.


Assuntos
Células-Tronco Mesenquimais , Expansão de Tecido , Queratinócitos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...