Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492424

RESUMO

Urban trees have attracted increasing attention to serve as a green prescription for addressing various challenges facing human society like climate change and environmental deterioration. However, without healthy growth of urban trees, they cannot service any environmental, social, and economic benefits in a sustainable manner. By monitoring the canopy development, the tree growth dynamics in different urban habitats can be detected and appropriate management approaches can be executed. Using the Kowloon Peninsula, Hong Kong, as a case, this study explores how remote sensing data can help monitor and understand the impacts of heterogeneous urban habitats on tree canopy dynamics. Four algorithms based on WorldView-2 satellite image are compared to optimize the canopy segmentation. Then the individual tree canopy is integrated with Sentinel-2 satellite data to obtain canopy growth dynamics for each season from 2016 to 2020. Three indicators are applied to reflect tree canopy status, including the fluorescence correction vegetation index (FCVI, tracking leaf chlorophyll density), the soil adjusted total vegetation index (SATVI, measuring the density of woody branches and twigs), and the normalised difference phenology index (NDPI, capturing canopy water content). And four heterogeneous habitats where urban trees stand are specified. The results revealed that urban trees show varying canopy growth status, in a descending order from natural terrains, parks, residential lands, to road verges, suggesting that urban habitats curtail trees' growth significantly. Additionally, two super-typhoons in 2017 and 2018, respectively, caused serious damages to tree canopy. Relevant resiliency of tree varies, echoing the sequence of canopy growth status with those in road verges the least resilient. This study shows how remote sensing data can be used to provide a better understanding of long-term tree canopy dynamics across large-scale heterogeneous urban habitats, which is key to monitoring and maintaining the health and growth of urban trees.


Assuntos
Tecnologia de Sensoriamento Remoto , Árvores , Humanos , Estudos Longitudinais , Ecossistema , Solo
2.
ACS Sens ; 8(7): 2664-2672, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352610

RESUMO

Curing activity in the preparation of solid composite propellants determines the performance of solid rocket motors in operation. Limited by the lack of effective monitoring tools, the complete curing behavior and thermal-induced curing kinetics are rarely disclosed. It is still a challenge to monitor in situ and in real-time the physical and chemical cross-linking reaction during the curing of propellant. Herein, we demonstrate a promising approach based on optical fiber capable of being implanted inside the propellant to monitor the internal stress evolution during the curing process, by taking hydroxyl-terminated polybutadiene propellant as an example. Attributed to the strain and temperature sensitivity of a pair of optical fiber gratings, the thermal-assisted physico-chemical cross-linking states of curing process have been demonstrated in detail. By tracking the stress-induced wavelength shifts of fiber gratings and calculating the curing mechanism function, the complete curing roadmap, including the viscous flow stage, gel stage, hardening stage can be clearly revealed, and the curing completion times are obtained as 154, 81, and 40 h, at the curing temperatures of 60, 70, and 80 °C, respectively. The apparent activation energy of this curing system obtained by calculation is 73.88 kJ/mol. This flexible fiber-based sensor provides an effective tool for unraveling the cure kinetic mechanism, and paves a universal pathway to guide the preparation and applications of versatile composite materials for solid rocket motors.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Cinética , Temperatura
3.
Opt Express ; 30(18): 32438-32446, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242305

RESUMO

We report an all-fiber scheme for the second harmonic generation (SHG) by embedding gallium selenide (GaSe) nanosheets into a suspended-core fiber (SCF). Based on modes analysis and theoretical calculations, the phase-matching modes from multiple optional modes in the SHG process and the optimal SCF length are determined by calculating the effective refractive index and balancing the SHG growth and transmission loss. Due to the long-distance interaction between pumped fundamental mode and GaSe nanosheets around the suspended core, an SHG signal is observed under a milliwatt-level pump light, and exhibits a quadratic growth with the increased pump power. The SHG process is also realized in a broad wavelength range by varying the pump in the range of 1420∼1700 nm. The SCF with the large air cladding and suspended core as an excellent platform can therefore be employed to integrate low-dimensional nonlinear materials, which holds great promise for the applications of all-fiber structures in new light source generating, signal processing and fiber sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...