Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125726

RESUMO

The ongoing COVID-19 pandemic, caused by the rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since early 2020, has highlighted the need for sensitive and reliable diagnostic methods. Droplet digital PCR (ddPCR) has demonstrated superior performance over the gold-standard reverse transcription PCR (RT-PCR) in detecting SARS-CoV-2. In this study, we explored the development of a multiplex ddPCR assay that enables sensitive quantification of SARS-CoV-2, which could be utilized for antiviral screening and the monitoring of COVID-19 patients. We designed a quadruplex ddPCR assay targeting four SARS-CoV-2 genes and evaluated its performance in terms of specificity, sensitivity, linearity, reproducibility, and precision using a two-color ddPCR detection system. The results showed that the quadruplex assay had comparable limits of detection and accuracy to the simplex ddPCR assays. Importantly, the quadruplex assay demonstrated significantly improved performance for samples with low viral loads and ambiguous results compared to the standard qRT-PCR approach. The developed multiplex ddPCR represents a valuable alternative and complementary tool for the diagnosis of SARS-CoV-2 and potentially other pathogens in various application scenarios beyond the current COVID-19 pandemic. The improved sensitivity and reliability of this assay could contribute to more effective disease monitoring and antiviral screening during the ongoing public health crisis.


Assuntos
COVID-19 , SARS-CoV-2 , Sensibilidade e Especificidade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Multiplex/métodos , Limite de Detecção , RNA Viral/genética , Quadruplex G , Teste de Ácido Nucleico para COVID-19/métodos
2.
Front Hum Neurosci ; 18: 1387471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952644

RESUMO

Objective: This study aimed to explore the electroencephalogram (EEG) indicators and clinical factors that may lead to poor prognosis in patients with prolonged disorder of consciousness (pDOC), and establish and verify a clinical predictive model based on these factors. Methods: This study included 134 patients suffering from prolonged disorder of consciousness enrolled in our department of neurosurgery. We collected the data of sex, age, etiology, coma recovery scales (CRS-R) score, complications, blood routine, liver function, coagulation and other laboratory tests, resting EEG data and follow-up after discharge. These patients were divided into two groups: training set (n = 107) and verification set (n = 27). These patients were divided into a training set of 107 and a validation set of 27 for this study. Univariate and multivariate regression analysis were used to determine the factors affecting the poor prognosis of pDOC and to establish nomogram model. We use the receiver operating characteristic (ROC) and calibration curves to quantitatively test the effectiveness of the training set and the verification set. In order to further verify the clinical practical value of the model, we use decision curve analysis (DCA) to evaluate the model. Result: The results from univariate and multivariate logistic regression analyses suggested that an increased frequency of occurrence microstate A, reduced CRS-R scores at the time of admission, the presence of episodes associated with paroxysmal sympathetic hyperactivity (PSH), and decreased fibrinogen levels all function as independent prognostic factors. These factors were used to construct the nomogram. The training and verification sets had areas under the curve of 0.854 and 0.920, respectively. Calibration curves and DCA demonstrated good model performance and significant clinical benefits in both sets. Conclusion: This study is based on the use of clinically available and low-cost clinical indicators combined with EEG to construct a highly applicable and accurate model for predicting the adverse prognosis of patients with prolonged disorder of consciousness. It provides an objective and reliable tool for clinicians to evaluate the prognosis of prolonged disorder of consciousness, and helps clinicians to provide personalized clinical care and decision-making for patients with prolonged disorder of consciousness and their families.

3.
Heliyon ; 10(5): e26909, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439827

RESUMO

Background: Early brain injury (EBI) caused by inflammatory responses in acute phase of Intracerebral hemorrhage (ICH) plays a vital role in the pathological progression of ICH. Increasing evidences demonstrate A1 reactive astrocytes are associated with the severity of EBI. G-protein coupled estrogen receptor 1 (GPER1) has been proved mediating the neuroprotective effects of estrogen in central nervous system (CNS) disease. However, whether GPER1 plays a protective effect on ICH and A1 reactive astrocytes activation is not well studied. Methods: ICH model was established by infused the autologous whole blood into the right basal ganglia in wild type and GPER1 knockout mice. GPER1 specific agonist G1 and antagonist G15 were administered by intraperitoneal injection at 1 h or 0.5 h after ICH. Neurological function was detected on day 1 and day 3 by open field test and corner turn test following ICH. Besides, A1 reactive astrocytes were determined by immunofluorescence staining after ICH on day 3. To further identify the possible mechanism of GPER1 mediated neuroprotective effect, Western blot assays was performed after ICH on day 3. Results: After ICH, G1 treatment alleviated mice neurobehavior deficits on day 1 and day 3. Meanwhile, G1 treatment also significantly reduced the GFAP positive astrocytes and the C3 positive cells after ICH. Interestingly, G15 reversed the protective effect of G1 on the neurobehavior of ICH mice. Meanwhile, the expression of GFAP+C3+ A1 reactive astrocytes were also reduced by activation of GPER1. Mechanistic studies indicated TLR4 and NF-κB mediated the neuroprotective effect of GPER1. Conclusion: Generally, activation of GPER1 alleviated the EBI through inhibiting A1 reactive astrocytes activation via TLR4/NF-κB pathway after ICH in mice. Additionally, GPER1may be a promising target for ICH treatment.

4.
Comput Biol Med ; 170: 108084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295471

RESUMO

OBJECTIVE: High-definition transcranial direct current stimulation (HD-tDCS) has been an effective neurostimulation method in the treatment of disorders of consciousness (DOC). However, the effects and mechanism of HD-tDCS are still unclear. METHODS: This study recruited 8 DOC patients and applied 20-min sessions of 2 mA HD-tDCS (central anode electrode at Pz) for 14 consecutive days. We record DOC patients' EEG data and Coma Recovery Scale-Revised (CRS-R) values at four time point: baseline (T0), after 1 day's and 7,14 days' parietal HD-tDCS treatment (T1, T2, T3). Power spectral density (PSD), relative power (RP), spectral entropy and spectral exponent were calculated to evaluate the EEG dynamic changes of DOC patients during long-term parietal HD-tDCS. At last, we calculated the correlation between changes of EEG features and changes of CRS-R values. RESULT: After 1 day's parietal HD-tDCS, DOC patients' CRS-R value had not changed (8.25 ± 1.91). HD-tDCS improved DOC patients' CRS-R value at T2 (9.75 ± 1.91, p < 0.05) and at T3 (11.38 ± 2.77, p < 0.05), compared with that at T0 (8.25 ± 1.91). As the treatment time increased, the EEG PSD decayed more slowly. Specifically, the delta frequency band RP decreased, while the alpha, beta, and gamma frequency bands RP increased. EEG oscillation characteristics changed but not significant at T1 (p > 0.05), and showed significant changes at T2 and T3 (p < 0.05). The spectral entropy continuously increased and the spectral exponent continuously decreased from T0 to T3. Specifically, the spectral entropy and spectral exponent of the parietal and occipital regions were significantly higher at T2 and T3 than that at T0 (p < 0.05). In addition, The changes in EEG features of the parietal and occipital lobes were correlated with changes in CRS-R value, especially between T2 and T0. CONCLUSION: Long-term parietal HD-tDCS can improve the consciousness level and brain activity in DOC patients. Resting-state EEG can evaluate the dynamic changes of brain activity in DOC patients during HD-tDCS. EEG oscillation and non-oscillatory activity might be used to explain the mechanism of HD-tDCS on DOC patients.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Transtornos da Consciência/terapia , Eletroencefalografia/métodos , Encéfalo
5.
CNS Neurosci Ther ; 30(3): e14469, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718541

RESUMO

INTRODUCTION: Combining transcranial magnetic stimulation with electroencephalography (TMS-EEG), oscillatory reactivity can be measured, allowing us to investigate the interaction between local and distant cortical oscillations. However, the extent to which human consciousness is related to these oscillatory effective networks has yet to be explored. AIMS: We tend to investigate the link between oscillatory effective networks and brain consciousness, by monitoring the global transmission of TMS-induced oscillations in disorders of consciousness (DOC). RESULTS: A cohort of DOC patients was included in this study, which included 28 patients with a minimally conscious state (MCS) and 20 patients with vegetative state/unresponsive wakefulness syndrome (VS/UWS). Additionally, 25 healthy controls were enrolled. The oscillatory reactivity to single-pulse TMS of the frontal, sensorimotor and parietal cortex was measured using event-related spectral perturbation of TMS-EEG. The temporal-spatial properties of the oscillatory reactivity were illustrated through life time, decay gradients and accumulative power. In DOC patients, an oscillatory reactivity was observed to be temporally and spatially suppressed. TMS-EEG of DOC patients showed that the oscillations did not travel as far in healthy controls, in terms of both temporal and spatial dimensions. Moreover, cortical theta reactivity was found to be a reliable indicator in distinguishing DOC versus healthy controls when TMS of the parietal region and in distinguishing MCS versus VS/UWS when TMS of the frontal region. Additionally, a positive correlation was observed between the Coma Recovery Scale-Revised scores of the DOC patients and the cortical theta reactivity. CONCLUSIONS: The findings revealed a breakdown of oscillatory effective networks in DOC patients, which has implications for the use of TMS-EEG in DOC evaluation and offers a neural oscillation viewpoint on the neurological basis of human consciousness.


Assuntos
Encéfalo , Transtornos da Consciência , Humanos , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/terapia , Eletroencefalografia/métodos , Estimulação Magnética Transcraniana , Estado de Consciência
6.
Front Neurol ; 14: 1238421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116109

RESUMO

Objective: The study aimed to find the difference in functional network topology on interictal electroencephalographic (EEG) between patients with drug-resistant epilepsy (DRE) and healthy people. Methods: We retrospectively analyzed the medical records as well as EEG data of ten patients with DRE and recruited five sex-age-matched healthy controls (HC group). Each participant remained awake while undergoing video-electroencephalography (vEEG) monitoring. After excluding data that contained abnormal discharges, we screened EEG segments that were free of artifacts and put them together into 20-min segments. The screened data was bandpass filtered to different frequency bands (delta, theta, alpha, beta, and gamma). The weighted phase lag index (wPLI) and the network properties were calculated to evaluate changes in the topology of the functional network. Finally, the results were statistically analyzed, and the false discovery rate (FDR) was used to correct for differences after multiple comparisons. Results: In the full frequency band (0.5-45 Hz), the functional connectivity in the DRE group during the interictal period was significantly lower than that in the HC group (p < 0.05). Compared to the HC group, in the full frequency band, the DRE group exhibited significantly decreased clustering coefficient (CC), node degree (D), and global efficiency (GE), while the characteristic path length (CPL) significantly increased (p < 0.05). In the sub-frequency bands, the functional connectivity of the DRE group was significantly lower than that of the HC group in the delta band but higher in the alpha, beta, and gamma bands (p < 0.05). The statistical results of network properties revealed that in the delta band, the DRE group had significantly decreased values for D, CC, and GE, but in the alpha, beta, and gamma bands, these values were significantly increased (p < 0.05). Additionally, the CPL of the DRE group significantly increased in the delta and theta bands but significantly decreased in the alpha, beta, and gamma bands (p < 0.05). Conclusion: The topology structure of the functional network in DRE patients was significantly changed compared with healthy people, which was reflected in different frequency bands. It provided a theoretical basis for understanding the pathological network alterations of DRE.

7.
Environ Pollut ; 337: 122526, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683757

RESUMO

Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 µM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.


Assuntos
Oryza , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Fitoquelatinas/metabolismo , Glutationa Peroxidase/metabolismo
8.
Biosens Bioelectron ; 228: 115179, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878066

RESUMO

Rapid, sensitive, and one-pot diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an extremely important role in point-of-care testing (POCT). Herein, we report an ultra-sensitive and rapid one-pot enzyme-catalyzed rolling circle amplification-assisted CRISPR/FnCas12a assay, termed OPERATOR. OPERATOR employs a single well-designed single-strand padlock DNA, containing a protospacer adjacent motif (PAM) site and a sequence complementary to the target RNA which procedure converts and amplifies genomic RNA to DNA by RNA-templated DNA ligation and multiply-primed rolling circle amplification (MRCA). The MRCA amplicon of single-stranded DNA is cleaved by the FnCas12a/crRNA complex and detected via a fluorescence reader or lateral flow strip. OPERATOR presents outstanding advantages including ultra-sensitivity (1.625 copies per reaction), high specificity (100%), rapid reaction speed (∼30 min), easy operation, low cost, and on-spot visualization. Furthermore, we established a POCT platform by combining OPERATOR with rapid RNA release and a lateral flow strip without professional equipment. The high performance of OPERATOR in SARS-CoV-2 tests was confirmed using both reference materials and clinical samples, and the results suggest that is readily adaptable for point-of-care testing of other RNA viruses.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , RNA
9.
Front Neurosci ; 17: 1293798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178839

RESUMO

Introduction: The mismatch negativity (MMN) index has been used to evaluate consciousness levels in patients with disorders of consciousness (DoC). Indeed, MMN has been validated for the diagnosis of vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state (MCS). In this study, we evaluated the accuracy of different MMN amplitude representations in predicting levels of consciousness. Methods: Task-state electroencephalography (EEG) data were obtained from 67 patients with DoC (35 VS and 32 MCS). We performed a microstate analysis of the task-state EEG and used four different representations (the peak amplitude of MMN at electrode Fz (Peak), the average amplitude within a time window -25- 25 ms entered on the latency of peak MMN component (Avg for peak ± 25 ms), the average amplitude of averaged difference wave for 100-250 ms (Avg for 100-250 ms), and the average amplitude difference between the standard stimulus ("S") and the deviant stimulus ("D") at the time corresponding to Microstate 1 (MS1) (Avg for MS1) of the MMN amplitude to predict the levels of consciousness. Results: The results showed that among the four microstates clustered, MS1 showed statistical significance in terms of time proportion during the 100-250 ms period. Our results confirmed the activation patterns of MMN through functional connectivity analysis. Among the four MMN amplitude representations, the microstate-based representation showed the highest accuracy in distinguishing different levels of consciousness in patients with DoC (AUC = 0.89). Conclusion: We discovered a prediction model based on microstate calculation of MMN amplitude can accurately distinguish between MCS and VS states. And the functional connection of the MS1 is consistent with the activation mode of MMN.

10.
Front Neurosci ; 16: 903703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812212

RESUMO

In the present study, we aimed to elucidate changes in electroencephalography (EEG) metrics during recovery of consciousness and to identify possible clinical markers thereof. More specifically, in order to assess changes in multidimensional EEG metrics during neuromodulation, we performed repeated stimulation using a high-density transcranial direct current stimulation (HD-tDCS) protocol in 42 patients with disorders of consciousness (DOC). Coma Recovery Scale-Revised (CRS-R) scores and EEG metrics [brain network indicators, spectral energy, and normalized spatial complexity (NSC)] were obtained before as well as fourteen days after undergoing HD-tDCS stimulation. CRS-R scores increased in the responders (R +) group after HD-tDCS stimulation. The R + group also showed increased spectral energy in the alpha2 and beta1 bands, mainly at the frontal and parietal electrodes. Increased graphical metrics in the alpha1, alpha2, and beta1 bands combined with increased NSC in the beta2 band in the R + group suggested that improved consciousness was associated with a tendency toward stronger integration in the alpha1 band and greater isolation in the beta2 band. Following this, using NSC as a feature to predict responsiveness through machine learning, which yielded a prediction accuracy of 0.929, demonstrated that the NSC of the alpha and gamma bands at baseline successfully predicted improvement in consciousness. According to our findings reported herein, we conclude that neuromodulation of the posterior lobe can lead to an EEG response related to consciousness in DOC, and that the posterior cortex may be one of the key brain areas involved in the formation or maintenance of consciousness.

11.
Front Neurosci ; 16: 878203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720697

RESUMO

The disorder of brain activity dynamics is one of the main characteristics leading to disorders of consciousness (DOC). However, few studies have explored whether the dynamics of brain activity can be modulated, and whether the dynamics of brain activity can help to evaluate the state of consciousness and the recovery progress of consciousness. In current study, 20 patients with minimally conscious state (MCS) and 13 patients with vegetative state (VS) were enrolled, and resting state electroencephalogram (EEG) data and the coma recovery scale-revised (CRS-R) scores were collected three times before and after high-definition transcranial direct current stimulation (HD-tDCS) treatment. The patients were divided into the improved group and the unimproved group according to whether the CRS-R scores were improved after the treatment, and the dynamic changes of resting state EEG microstate parameters during treatment were analyzed. The results showed the occurrence per second (OPS) of microstate D was significantly different between the MCS group and VS group, and it was positively correlated with the CRS-R before the treatment. After 2 weeks of the treatment, the OPS of microstate D improved significantly in the improved group. Meanwhile, the mean microstate duration (MMD), ratio of time coverage (Cov) of microstate C and the Cov of microstate D were significantly changed after the treatment. Compared with the microstates parameters before the treatment, the dynamic changes of parameters with significant difference in the improved group showed a consistent trend after the treatment. In contrast, the microstates parameters did not change significantly after the treatment in the unimproved group. The results suggest that the dynamics of EEG brain activity can be modulated by HD-tDCS, and the improvement in brain activity dynamics is closely related to the recovery of DOC, which is helpful to evaluate the level of DOC and the progress of recovery of consciousness.

12.
Cogn Neurodyn ; 16(3): 609-620, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35603051

RESUMO

Recent achievements in evaluating the residual consciousness of patients with disorders of consciousness (DOCs) have demonstrated that spontaneous or evoked electroencephalography (EEG) could be used to improve consciousness state diagnostic classification. Recent studies showed that the EEG signal of the task-state could better characterize the conscious state and cognitive ability of the brain, but it has rarely been used in consciousness assessment. A cue-guide motor task experiment was designed, and task-state EEG were collected from 18 patients with unresponsive wakefulness syndrome (UWS), 29 patients in a minimally conscious state (MCS), and 19 healthy controls. To obtain the markers of residual motor function in patients with DOC, the event-related potential (ERP), scalp topography, and time-frequency maps were analyzed. Then the coherence (COH) and debiased weighted phase lag index (dwPLI) networks in the delta, theta, alpha, beta, and gamma bands were constructed, and the correlations of network properties and JFK Coma Recovery Scale-Revised (CRS-R) motor function scores were calculated. The results showed that there was an obvious readiness potential (RP) at the Cz position during the motor preparation process in the MCS group, but no RP was observed in the UWS group. Moreover, the node degree properties of the COH network in the theta and alpha bands and the global efficiency properties of the dwPLI network in the theta band were significantly greater in the MCS group compared to the UWS group. The above network properties and CRS-R motor function scores showed a strong linear correlation. These findings demonstrated that the brain network properties of task-state EEG could be markers of residual motor function of DOC patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-021-09741-7.

13.
Plant Biotechnol J ; 20(5): 964-976, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990051

RESUMO

Molecular characterization of genetically modified organisms (GMOs) yields basic information on exogenous DNA integration, including integration sites, entire inserted sequences and structures, flanking sequences and copy number, providing key data for biosafety assessment. However, there are few effective methods for deciphering transgene integration, especially for large DNA fragment integration with complex rearrangement, inversion and tandem repeats. Herein, we developed a universal Large Integrated DNA Fragments Enrichment strategy combined with PacBio Sequencing (LIFE-Seq) for deciphering transgene integration in GMOs. Universal tilling DNA probes targeting transgenic elements and exogenous genes facilitate specific enrichment of large inserted DNA fragments associated with transgenes from plant genomes, followed by PacBio sequencing. LIFE-Seq were evaluated using six GM events and four crop species. Target DNA fragments averaging ~6275 bp were enriched and sequenced, generating ~26 352 high fidelity reads for each sample. Transgene integration structures were determined with high repeatability and sensitivity. Compared with next-generation whole-genome sequencing, LIFE-Seq achieved better data integrity and accuracy, greater universality and lower cost, especially for transgenic crops with complex inserted DNA structures. LIFE-Seq could be applied in molecular characterization of transgenic crops and animals, and complex DNA structure analysis in genetics research.


Assuntos
Produtos Agrícolas , Genoma de Planta , Animais , Sequência de Bases , Produtos Agrícolas/genética , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Análise de Sequência de DNA , Transgenes/genética
14.
Ann Palliat Med ; 10(8): 8889-8899, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488376

RESUMO

BACKGROUND: Cranioplasty (CP) is necessary for patients with disorders of consciousness (DOC) and skull defects. However, due to the complexity of these conditions, the surgical indications are conservative, and there are few published reports. This study aimed to assess the outcomes and complications of CP in patients with DOC, and to optimize the management of transcalvarial herniation (TCH) and hydrocephalus. METHODS: A total of 87 patients with DOC who underwent CP at our center between December 2016 and April 2019 were selected. The patients were divided into traumatic brain injury (TBI) and non-TBI groups, and the complications, outcomes, and costs were compared. Factors associated with prognosis and surgical complications were identified using multivariate logistic regression analysis. RESULTS: Postoperative complications occurred in 18 patients (20.7%). The complication rate was higher in the TBI group than in the non-TBI group (P=0.031). Preoperative ventriculoperitoneal shunt (VPS) was identified as a risk factor for incision complication (P=0.032), and non-traumatic cause tended to be a protective factor against postoperative hydrocephalus (P=0.055). One year after CP, 25 patients (28.7%) regained full consciousness [Extended Glasgow Outcome Scale (GOSE) ≥3] and 10 patients (11.5%) achieved partial self-care (GOSE =4). Multivariate analyses revealed that minimally conscious state (MCS) vs. vegetative state/unresponsive wakefulness syndrome (VS/UWS) (P=0.000) and early CP (P=0.023) were potential indicators for the recovery of consciousness. CONCLUSIONS: Our findings suggest that CP is safe in patients with DOC and may be beneficial for the recovery of consciousness. Early surgery and surgery for MCS provide better results. Timely CP in patients with TCH can help to reduce preoperative VPS, control incision complications, and detect and intervene in potential hydrocephalus.


Assuntos
Lesões Encefálicas Traumáticas , Estado de Consciência , Humanos , Estado Vegetativo Persistente , Crânio , Derivação Ventriculoperitoneal
15.
Transl Neurosci ; 12(1): 145-153, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33976932

RESUMO

OBJECTIVE: This study aimed to determine the safety and effectiveness of DTI-assisted neuroendoscopy for treating intracranial hemorrhage (ICH). METHODS: This retrospective study included clinical data from 260 patients with spontaneous supratentorial ICH who received neuroendoscopic hematoma removal. Patients were separated into groups based on the surgery method they received: DTI-assisted neuroendoscopy (69 cases) and standard neuroendoscopy (191 cases). All patients were followed up for 6 months. Multivariate logistic regression analyzed the risk factors affecting the prognosis of patients. The outcomes of the two groups were compared using Kaplan-Meier survival curves. RESULTS: The prognostic modified Rankin Scale (mRS) score was significantly better (P = 0.027) in the DTI-assisted neuroendoscopy group than in the standard neuroendoscopy group. Logistic regression analysis showed that DTI-assisted neuroendoscopy is an independent protective factor for a favorable outcome (model 1: odds ratio [OR] = 0.42, P = 0.015; model 2: OR = 0.40, P = 0.013). Kaplan-Meier survival curves were used to show that the median time for a favorable outcome was 66 days (95% confidence interval [CI] = 48.50-83.50 days) in the DTI-assisted neuroendoscopy group and 104 days (95% CI = 75.55-132.45 days) in the standard neuroendoscopy group. Log-rank testing showed that the DTI-assisted neuroendoscopy group had a lower pulmonary infection rate (χ 2 = 4.706, P = 0.030) and a better prognosis (χ 2 = 5.223, P = 0.022) than the standard neuroendoscopy group. The survival rate did not differ significantly between the DTI-assisted neuroendoscopy group and the standard neuroendoscopy group (P > 0.05). CONCLUSIONS: The use of DTI in neuroendoscopic hematoma removal can significantly improve neurological function outcomes in patients, but it does not significantly affect the mortality of patients.

16.
Environ Pollut ; 268(Pt A): 115829, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160738

RESUMO

Antagonism between selenium (Se) and cadmium (Cd) has been demonstrated in plants. However, a mutual suppression threshold for Se and Cd has not been identified in previous studies using Cd or Se individually. To fill this knowledge gap, we determined the levels of Se and Cd in various tissues of rice under concentration gradients of Se and Cd with different Se application times via hydroponic experiments. The results showed that the application of exogenous Se or Cd reduced the uptake and transport of the other. When the molar ratio of Se/Cd (R (Se/Cd)) was higher than 1, the concentration and transfer factor of Cd (TF-Cd) in all parts of rice simultaneously reached the lowest values. The minimum Se absorption in rice was obtained at R (Cd/Se) greater than 20, while no inhibition threshold was found for Se transport. In addition, approximately 1:1 R (Se/Cd) was observed in roots and the addition of exogenous Cd or Se promoted the enrichment of the other element in roots. These data suggested a mutual inhibition of Se and Cd in their absorption, transportation and accumulation in rice, which might be related to the formation of insoluble Cd-Se complexes in roots. This study provided new insights into a plausible explanation of the interactions between Se and Cd and contributed to the remediation and treatment of combined Se and Cd pollution in farmland systems.


Assuntos
Oryza , Selênio , Poluentes do Solo , Cádmio/análise , Raízes de Plantas/química , Poluentes do Solo/análise
17.
Front Hum Neurosci ; 14: 560586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100996

RESUMO

Recently a positive treatment effect on disorders of consciousness (DOCs) with high-definition transcranial direct-current stimulation (HD-tDCS) has been reported; however, the neural modulation mechanisms of this treatment's efficacy need further investigation. To better understand the processing of HD-tDCS interventions, a long-lasting HD-tDCS protocol was applied to 15 unresponsive wakefulness syndrome (UWS) patients and 20 minimally conscious states (MCS) patients in this study. Ten minutes of resting-state electroencephalograms (EEGs) were recorded from the patients, and the coma recovery scale-revised scores (CRS-Rs) were assessed for each patient from four time-points (T0, T1, T2, and T3). Brain networks were constructed by calculating the EEG spectral connectivity using the debiased weighted phase lag index (dwPLI) and then quantified the network information transmission efficiency by graph theory. We found that there was an increasing trend in local and global information processing of beta and gamma bands in resting-state functional brain networks during the 14 days of HD-tDCS modulation for MCS patients. Furthermore, the increased functional connectivity not only occurred in the local brain area surrounding the stimulation position but was also present across more global brain areas. Our results suggest that long-lasting HD-tDCS on the precuneus may facilitate information processing among neural populations in MCS patients.

18.
Front Neurosci ; 14: 381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410950

RESUMO

OBJECTIVE: To evaluate the effects of long-term High-definition transcranial direct current stimulation (HD-tDCS) over precuneus on the level of consciousness (LOC) and the relationship between Mismatch negativity (MMN) and the LOC over the therapy period in patients with Disorders of consciousness (DOCs). METHODS: We employed a with-in group repeated measures design with an anode HD-tDCS protocol (2 mA, 20 min, the precuneus) on 11 (2 vegetative state and nine minimally conscious state) patients with DOCs. MMN and Coma Recovery Scale-Revised (CRS-R) scores were measured at four time points: before the treatment of HD-tDCS (T0), after a single session of HD-tDCS (T1), after the treatment of 7 days (T2) and 14 days (T3). A frequency-deviant oddball paradigm with two deviation magnitudes (standard stimulus: 1000 Hz, small deviant stimuli: 1050 Hz, large deviant stimuli: 1200 Hz) was adopted to elicit MMN. RESULTS: Significant improvements of CRS-R score were found after 7-day (T2) and 14-day (T3) treatment compared with baseline (T0). Regarding the MMN, significant improvements of MMN amplitudes were observed after a single session of stimulation (T1), 7-day (T2) and 14-day treatment (T3) compared with baseline (T0). Additionally, there were significant negative correlations between CRS-R scores and MMN amplitudes elicited by both large and small deviant stimuli. CONCLUSION: Long-term HD-tDCS over precuneus might improve signs of consciousness in patients with DOCs as measured by CRS-R total scores, and MMN could be an assistant assessment in the course of tDCS treatment.

19.
J Control Release ; 322: 187-199, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32169536

RESUMO

Paper is a common material that is promising for constructing microfluidic chips (lab-on-a-paper) for diagnostics and drug delivery for biomedical applications. In the past decade, extensive research on paper-based microfluidics has accumulated a large number of scientific publications in the fields of biomedical diagnosis, food safety, environmental health, drug screening and delivery. This review focuses on the recent progress on paper-based microfluidic technology with an emphasis on the design, optimization and application of the technology platform, in particular for medical diagnostics and drug delivery. Novel advances have concentrated on engineering paper devices for point-of-care (POC) diagnostics, which could be integrated with nucleic acid-based tests and isothermal amplification experiments, enabling rapid sample-to-answer assays for field testing. Among the isothermal amplification experiments, loop-mediated isothermal amplification (LAMP), an extremely sensitive nucleic acid test, specifically identifies ultralow concentrations of DNA/RNA from practical samples for diagnosing diseases. We thus mainly focus on the paper device-based LAMP assay for the rapid infectious disease diagnosis, foodborne pathogen analysis, veterinary diagnosis, plant diagnosis, and environmental public health evaluation. We also outlined progress on paper microfluidic devices for drug delivery. The paper concludes with a discussion on the challenges of this technology and our insights into how to advance science and technology towards the development of fully functional paper devices in diagnostics and drug delivery.


Assuntos
Microfluídica , Preparações Farmacêuticas , Dispositivos Lab-On-A-Chip , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...