Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 117(3): 705-713, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38630485

RESUMO

Wild bumble bees (Hymenoptera: Apidae) play a vital role in agro-ecosystems as important pollinators. However, they are threatened by virus pathogens that are widespread in honey bees. Previous studies have reported that viruses were able to be transmitted across bee genera and caused potential danger to wild bumble bees. China is a global biodiversity hotspot for bumble bees. However, the impact of viruses on the wild bumble bee communities remains elusive. Black queen cell virus (BQCV) is one of the most common honey bee viruses. Here, a total of 72 wild bumble bee samples from 17 geographic regions of China were tested for BQCV. Thirteen positive samples were identified and sequence comparison of partial capsid genes demonstrated a genetic identity of 99.69% to 100%. A phylogenetic tree analysis also showed a close relationship between 13 BQCV isolates and others from a variety of recorded hosts in China. Meanwhile, a distinct evolutionary branch of China isolates was formed when clustering isolates from worldwide bumble bee species. A correlation between BQCV and their geographic locations were observed (P < 0.05). This study not only provides the first evidence of widespread BQCV in wild bumble bee communities in China but also detects a distinct set of genetically identical or closely related BQCV variants that circulate and evolutionarily differ from other countries.


Assuntos
Dicistroviridae , Animais , Abelhas/virologia , China , Dicistroviridae/genética , Filogenia
2.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895088

RESUMO

The fat body has important functions in energy, fertility, and immunity. In female insects, mating stimulates physiological, behavioral, and gene expression changes. However, it remains unclear whether the metabolites in the fat body are affected after the bumblebee (Bombus terrestris) queen mates. Here, the ultrastructure and lipid metabolites in fat body of mated queens were compared with those of virgins. The fat body weight of mated bumblebee queens was significantly increased, and the adipocytes were filled with lipid droplets. Using LC-MS/MS-based untargeted lipidomics, 949 and 748 differential metabolites were identified in the fat body of virgin and mated bumblebee queens, respectively, in positive and negative ion modes. Most lipid metabolites were decreased, especially some biomembrane components. In order to explore the relationship between the structures of lipid droplets and metabolite accumulation, transmission electron microscopy and fluorescence microscopy were used to observe the fat body ultrastructure. The size/area of lipid droplets was larger, and the fusion of lipid droplets was increased in the mated queen's fat body. These enlarged lipid droplets may store more energy and nutrients. The observed differences in lipid metabolites in the fat body of queens contribute to understanding the regulatory network of bumblebees post mating.


Assuntos
Corpo Adiposo , Lipidômica , Abelhas , Feminino , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lipídeos
3.
Nat Commun ; 14(1): 5499, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679330

RESUMO

The emergence of caste-differentiated colonies, which have been defined as 'superorganisms', in ants, bees, and wasps represents a major transition in evolution. Lifetime mating commitment by queens, pre-imaginal caste determination and lifetime unmatedness of workers are key features of these animal societies. Workers in superorganismal species like honey bees and many ants have consequently lost, or retain only vestigial spermathecal structures. However, bumble bee workers retain complete spermathecae despite 25-40 million years since their origin of superorganismality, which remains an evolutionary mystery. Here, we show (i) that bumble bee workers retain queen-like reproductive traits, being able to mate and produce colonies, underlain by queen-like gene expression, (ii) the social conditions required for worker mating, and (iii) that these abilities may be selected for by early queen-loss in these annual species. These results challenge the idea of lifetime worker unmatedness in superorganisms, and provide an exciting new tool for the conservation of endangered bumble bee species.


Assuntos
Abelhas , Abelhas/anatomia & histologia , Abelhas/genética , Abelhas/fisiologia , Masculino , Feminino , Animais , Expressão Gênica , Comportamento Sexual Animal , Evolução Biológica
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768248

RESUMO

Tissue phenotypic plasticity facilitates rapid adaptation of organisms to biotic and/or abiotic pressure. The reproductive capacity of honey bee workers (Apis mellifera) is plastic and responsive to pheromones produced by broods and the queen. Egg laying workers (ELWs), which could reactivate their ovaries and lay haploid eggs upon queen lost, have been commonly discussed from many aspects. However, it remains unclear whether midgut homeostasis in ELWs is affected during plastic changes. Here, we found that the expression of nutrition- and autophagy-related genes was up-regulated in the midguts of ELWs, compared with that in nurse workers (NWs) by RNA-sequencing. Furthermore, the area and number of autophagosomes were increased, along with significantly increased cell death in the midguts of ELWs. Moreover, cell cycle progression in the midguts of ELWs was increased compared with that in NWs. Consistent with the up-regulation of nutrition-related genes, the body and midgut sizes, and the number of intestinal proliferation cells of larvae reared with royal jelly (RJ) obviously increased more than those reared without RJ in vitro. Finally, cell proliferation was dramatically suppressed in the midguts of ELWs when autophagy was inhibited. Altogether, our data suggested that autophagy was induced and required to sustain cell proliferation in ELWs' midguts, thereby revealing the critical role of autophagy played in the intestines during phenotypic plasticity changes.


Assuntos
Autofagia , Intestinos , Abelhas/genética , Animais , Larva/fisiologia , Autofagia/genética , Adaptação Fisiológica , Proliferação de Células
5.
Front Genet ; 12: 795669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899871

RESUMO

Bumblebee queens have remarkable spermathecae that store sperm for year-round reproduction. The spermathecal gland is regarded as a secretory organ that could benefit sperm storage. Queen mating provokes substantial physiological, behavioral, and gene expression changes. Here, the transcriptomes of spermathecae were compared between virgins and mated queens of the bumblebee, Bombus terrestris L., at 24 h post mating. Differentially expressed genes were further validated by real time quantitative PCR and immunofluorescence assay. In total, the expression of 11, 069 and 10, 862 genes were identified in virgins and mated queens, respectively. We identified that 176 differentially expressed genes between virgin and mated queen spermathecae: 110 (62.5%) genes were upregulated, and 66 (37.5%) genes were downregulated in mated queens. Most of the differentially expressed genes validated by RT-qPCR were concentrated on immune response [i.e., leucine-rich repeat-containing protein 70 (35.8-fold), phenoloxidase 2 (41.9-fold), and defensin (4.9-fold)] and sperm storage [i.e., chymotrypsin inhibitor (6.2-fold), trehalose transporter Tret1 (1.7-, 1.9-, 2.4-, and 2.4-fold), and heterogeneous nuclear ribonucleoprotein A3 (1.2-, and 2.6-fold)] functions in the spermathecae of mated queens. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) was hypothesized to promote the mating behavior according to RT-qPCR and immunofluorescence assay. The expression levels of most upregulated immune genes were decreased significantly at 3 days post mating. In conclusion, the external sperm transfer into spermathecae led to the significantly upregulated immune response genes in bumblebees. These gene expression differences in queen spermathecae contribute to understanding the bumblebee post mating regulatory network.

6.
Medicine (Baltimore) ; 100(26): e26422, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34190163

RESUMO

BACKGROUND: Probiotics supplementation has emerged as adjuvant therapy for chronic kidney disease (CKD) in recent years. However, the effects of probiotic preparations on serum inflammatory cytokine levels are still highly controversial and poorly documented. Therefore, we performed the protocol for systematic review and meta-analysis to further clarify the effects of probiotic preparations in CKD patients. METHODS: This review will develop following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. We searched literature published until May, 2021 thoroughly in PUBMED, Scopus, EMBASE, Web of Science, and Cochrane Library databases on May, 2021. The risk of bias of included studies was estimated by taking into consideration the characteristics including random sequence generation, allocation concealment, blinding of patients, blinding of outcome assessment, completeness of outcome data, selective reporting, and other bias by Cochrane Collaboration's tool for assessing the risk of bias. Data synthesis and analyses were performed using Stata version 10.0 software. RESULTS: The results of this systematic review and meta-analysis will be published in a peer-reviewed journal. CONCLUSION: We hypothesized that probiotic preparations may decrease the serum levels of inflammatory cytokines and protect the intestinal epithelial barrier of patients with CKD.


Assuntos
Citocinas/sangue , Probióticos/farmacologia , Insuficiência Renal Crônica , Suplementos Nutricionais , Humanos , Metanálise como Assunto , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/terapia , Projetos de Pesquisa , Revisões Sistemáticas como Assunto , Resultado do Tratamento
7.
Onco Targets Ther ; 12: 5281-5291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308698

RESUMO

BACKGROUND: Activation of epidermal growth factor receptor (EGFR) has been reported in a variety of cancer types, including colorectal cancer (CRC), and represents a potential chemotherapeutic drug target. EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been increasingly applied in the clinical treatment of CRC, but development of drug resistance during the treatment has greatly limited their application. Signal transducer and activator of transcription 3 (STAT3) and its mediated signal transduction pathway play an important role in the occurrence, development and metastasis of CRC, and are related to the development of EGFR-TKI resistance in CRC. METHODS: Cell viability, colony formation and cellular morphology were examined to evaluate the potent antiproliferative effect of the STAT3 inhibitor napabucasin, LY5 and rhein on the human CRC cell lines HCT116, SW620, RKO and DLD-1. Flow cytometry-based analysis was employed to determine whether rhein can affect the cell cycle and apoptosis. The expression level of phosphorylated STAT3 (P-STAT3), and cell cycle- and apoptosis-related proteins BCL2, CDC2 BAX, Cyclin D1 and Cyclin B1 were detected by Western blot analysis. RESULTS: This study revealed that rhein can significantly reduce cell viability and stimulate apoptosis in human CRC cells in a dose-dependent manner. In addition, rhein induced cell cycle arrest at the G2/M phase in CRC cells and dose-dependently inhibited the expression of cell cycle-related proteins. Additionally, it was found that napabucasin, LY5 and rhein considerably sensitized cells to the EGFR-TKI erlotinib, thus suppressing CRC cell proliferation. Rhein also inhibited the phosphorylation of its downstream target STAT3. Inhibition of STAT3 and EGFR phosphorylation was also observed after treatment with a combination of rhein and EGFR inhibitors. CONCLUSION: This study confirmed the synergistic effect of STAT3 inhibitor and EGFR inhibitor in CRC cell lines. Additionally, we found that rhein sensitizes human CRC cells to EGFR-TKIs by inhibiting STAT3 pathway. When combined with EGFR-TKIs, rhein may be a novel STAT3 inhibitor in CRC.

8.
Molecules ; 24(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067711

RESUMO

As a new dosage form, coenzyme Q10 (Co-Q10) soft capsules are easily absorbed and utilized by the human body. Co-Q10 soft capsules can effectively improve the bioavailability and reduce medical costs for patients. A main concern about Co-Q10 as an active pharmaceutical ingredient (API) is how to control the total quantity of related substances. In this article, according to the degradation pattern of the API, the most easily degradable impurity (impurity X) in the sample was prepared and its chemical structure was determined. Furthermore, a simple and accurate method was developed for the determination of related substances and to avert the interference of excipient ingredients in Co-Q10 soft capsules. The approach was validated adequately and the primary impurity X was confirmed accurately. The limit of total quantity of related substances (less than 1%) could be revised to the level of specific impurity X being no more than 0.5%, in this effective quality control method of Co-Q10 soft capsules. The revised level is suggested to be included in the corresponding standard of the supplement taken from the Pharmacopoeia of the People's Republic of China (2015 edition). This can provide a feasible method for the relevant enterprises and regulatory authorities to control the related substances of coenzyme Q10 soft capsules.


Assuntos
Antioxidantes/química , Cápsulas/química , Composição de Medicamentos , Ubiquinona/análogos & derivados , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Cápsulas/uso terapêutico , China , Suplementos Nutricionais , Humanos , Ubiquinona/química , Ubiquinona/uso terapêutico
9.
PLoS One ; 12(4): e0175573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403242

RESUMO

The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.


Assuntos
Abelhas/metabolismo , Encéfalo/metabolismo , Varroidae/fisiologia , Animais , Abelhas/parasitologia , Colapso da Colônia/parasitologia , Resistência à Doença , Asseio Animal , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas
10.
J Genet Genomics ; 41(7): 369-78, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25064676

RESUMO

Heparan sulfate proteoglycans (HSPGs) are critically involved in a variety of biological events. The functions of HSPGs are determined by the nature of the core proteins and modifications of heparan sulfate (HS) glycosaminoglycan (GAG) chains. The distinct O-sulfotransferases are important for nonrandom modifications at specific positions. Two HS 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, were identified in Drosophila. Previous experiments using RNA interference (RNAi) suggested that Hs3st-B was required for Notch signaling. Here, we generated a null mutant of Hs3st-B via ends-out gene targeting and examined its role(s) in development. We found that homozygous Hs3st-B mutants have no neurogenic defects or alterations in the expression of Notch signaling target gene. Thus, our results strongly argue against an essential role for Hs3st-B in Notch signaling. Moreover, we have generated two independent Hs3st-A RNAi lines which worked to deplete Hs3st-A. Importantly, Hs3st-A RNAi combined with Hs3st-B mutant flies did not alter the expression of Notch signaling components, arguing that both Hs3st-A and Hs3st-B were not essential for Notch signaling. The establishment of Hs3st-B mutant and effective Hs3st-A RNAi lines provides essential tools for further studies of the physiological roles of Hs3st-A and Hs3st-B in development and homeostasis.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Deleção de Genes , Receptores Notch/metabolismo , Transdução de Sinais , Sulfotransferases/genética , Animais , Drosophila melanogaster/genética , Recombinação Homóloga , Sulfotransferases/deficiência
11.
Cell Signal ; 26(11): 2317-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25049075

RESUMO

Intrinsic and extrinsic signals as well as the extracellular matrix (ECM) tightly regulate stem cells for tissue homeostasis and regenerative capacity. Little is known about the regulation of tissue homeostasis by the ECM. Heparan sulfate proteoglycans (HSPGs), important components of the ECM, are involved in a variety of biological events. Two heparin sulfate 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, encode the modification enzymes in heparan sulfate (HS) biosynthesis. Here we demonstrate that Hs3st-A and Hs3st-B are required for adult midgut homeostasis. Depletion of Hs3st-A in enterocytes (ECs) results in increased intestinal stem cell (ISC) proliferation and tissue homeostasis loss. Moreover, increased ISC proliferation is also observed in Hs3st-B null mutant alone, or in combination with Hs3st-A RNAi. Hs3st-A depletion-induced ISC proliferation is effectively suppressed by simultaneous inhibition of the EGFR signaling pathway, suggesting that tissue homeostasis loss in Hs3st-A-deficient intestines is due to increased EGFR signaling. Furthermore, we find that Hs3st-A-depleted ECs are unhealthy and prone to death, while ectopic expression of the antiapoptotic p35 is able to greatly suppress tissue homeostasis loss in these intestines. Together, our data suggest that Drosophila Hs3st-A and Hs3st-B are involved in the regulation of ISC proliferation and midgut homeostasis maintenance.


Assuntos
Proliferação de Células/fisiologia , Enterócitos/metabolismo , Homeostase/fisiologia , Transdução de Sinais/fisiologia , Sulfotransferases/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Enterócitos/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Heparitina Sulfato/biossíntese , Heparitina Sulfato/genética , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Sulfotransferases/genética
12.
Stem Cell Reports ; 2(2): 135-44, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24527387

RESUMO

Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Genótipo , Sistema de Sinalização das MAP Quinases , Mutação , Fenótipo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...