Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715092

RESUMO

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Assuntos
Angiostrongylus cantonensis , Encéfalo , Camundongos Endogâmicos BALB C , RNA Longo não Codificante , Infecções por Strongylida , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Angiostrongylus cantonensis/genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/genética , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Larva/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Infect Dis Poverty ; 13(1): 19, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414088

RESUMO

BACKGROUND: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda: Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensis will provide data for further research on the snail biology and controlling the spread of S. japonicum. METHODS: The draft genome was de novo assembly using the long-read sequencing technology (PacBio Sequel II) and corrected with Illumina sequencing data. Then, using Hi-C sequencing data, the genome was assembled at the chromosomal level. CAFE was used to do analysis of contraction and expansion of the gene family and CodeML module in PAML was used for positive selection analysis in protein coding sequences. RESULTS: A total length of 1.46 Gb high-quality O. hupensis genome with 17 unique full-length chromosomes (2n = 34) of the individual including a contig N50 of 1.35 Mb and a scaffold N50 of 75.08 Mb. Additionally, 95.03% of these contig sequences were anchored in 17 chromosomes. After scanning the assembled genome, a total of 30,604 protein-coding genes were predicted. Among them, 86.67% were functionally annotated. Further phylogenetic analysis revealed that O. hupensis was separated from a common ancestor of Pomacea canaliculata and Bellamya purificata approximately 170 million years ago. Comparing the genome of O. hupensis with its most recent common ancestor, it showed 266 significantly expanded and 58 significantly contracted gene families (P < 0.05). Functional enrichment of the expanded gene families indicated that they were mainly involved with intracellular, DNA-mediated transposition, DNA integration and transposase activity. CONCLUSIONS: Integrated use of multiple sequencing technologies, we have successfully constructed the genome at the chromosomal-level of O. hupensis. These data will not only provide the compressive genomic information, but also benefit future work on population genetics of this snail as well as evolutional studies between S. japonicum and the snail host.


Assuntos
Gastrópodes , Schistosoma japonicum , Animais , Humanos , Schistosoma japonicum/genética , Filogenia , Gastrópodes/genética , Cromossomos/genética , DNA , China
3.
Trop Med Infect Dis ; 7(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548681

RESUMO

Sound knowledge of the local distribution and diversity of freshwater snail intermediate hosts and the factors driving the occurrence and abundance of them is crucial to understanding snail-borne parasitic disease transmission and to setting up effective interventions in endemic areas. In this study, we investigated the freshwater snails, water quality parameters, physical characteristics of habitats, predators and competitors, and human activity variables at 102 sites during December 2018 and August 2019 in Shenzhen and adjacent areas in China. We used decision tree models and canonical correspondence analysis to identify the main environmental and biotic factors affecting the occurrence and abundance of snail species. A total of nine species of snail were collected throughout the study area, with Biomphalaria straminea, Sinotaia quadrata, and Physella acuta being the most predominant species. Our study showed that the most important variables affecting the abundance and occurrence of snail species were the presence of predators and competitors, macrophyte cover, chlorophyll-a, substrate type, river depth, and water velocity. In terms of human activities, snail species occurred more frequently and in larger numbers in water bodies affected by human disturbances, especially for sewage discharge, which may reduce the occurrence and abundance of snail predators and competitors. These findings suggest that proper management of water bodies to reduce water pollution may increase the abundance of snail predators and competitors, and should be considered in integrated snail control strategies in the study area.

4.
PLoS Negl Trop Dis ; 16(10): e0010667, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215300

RESUMO

BACKGROUND: Schistosomiasis, also known as bilharzia, is the second important parasitic disease after malaria. The present study aimed to evaluate the molluscicidal effects of silver nanoparticles on Biomphalaria alexandrina, B. glabrata, Oncomelania hupensis, snail intermediate hosts of intestinal schistosomes (i.e. Schistosoma mansoni and S. japonicum), along with the changes their antioxidant enzymes. METHODS: Silver (Ag) nano powder (Ag-NPs) was selected to test the molluscicidal effects on three species of freshwater snails. Exposure to Ag-NPs induced snail mortality and the LC50 and LC90 values of Ag-NPs for each snail species were calculated by probit analysis. Control snails were maintained under the same experimental conditions in dechlorinated water. Snail hemolymph was collected to measure the levels of antioxidant enzymes, such as total antioxidants capacity (TCA), glutathione (GSH), catalase (CAT) and nitric oxide (NO). In addition, the non-target organism, Daphnia magna, was exposed to a series of Ag-NPs concentration, similar to the group of experimental snails, in order to evaluate the LC50 and LC90 and compare these values to those obtained for the targeted snails. RESULTS: The results indicated that Ag-NPs had a molluscicidal effect on tested snails with the variation in lethal concentration. The LC50 values of Ag-NPs for B. alexandrina snails exposed for 24, 48, 72 hrs and 7 days were 7.91, 5.69, 3.83 and 1.91 parts per million (ppm), respectively. The LC50 values for B. glabrata snails exposed for 24, 48, 72 hrs and 7 days were 16.55, 10.44, 6.91 and 4.13 ppm, respectively, while the LC50 values for O. hupensis snails exposed for 24, 48, 72 hrs and 7 days were 46.5, 29.85, 24.49 and 9.62 ppm, respectively. Moreover, there is no mortality detected on D. magna when exposed to more than double and half concentration (50 ppm) of Ag-NPs during a continuous period of 3 hrs, whereas the LC90 value for B. alexandrina snails was 18 ppm. The molluscicidal effect of the synthesized Ag-NPs seems to be linked to a potential reduction of the antioxidant activity in the snail's hemolymph. CONCLUSIONS: Synthesized Ag-NPs have a clear molluscicidal effect against various snail intermediate hosts of intestinal schistosome parasites and could potentially serve as next generation molluscicides.


Assuntos
Biomphalaria , Nanopartículas Metálicas , Moluscocidas , Esquistossomose , Animais , Antioxidantes/farmacologia , Catalase , Glutationa/farmacologia , Moluscocidas/farmacologia , Óxido Nítrico , Schistosoma mansoni , Esquistossomose/prevenção & controle , Prata/farmacologia , Água
5.
Trop Med Infect Dis ; 7(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36006268

RESUMO

Leishmaniasis is a neglected tropical disease that seriously influences global public health. Among all the parasitic diseases, leishmaniasis is the third most common cause of morbidity after malaria and schistosomiasis. Circular RNAs (circRNAs) are a new type of noncoding RNAs that are involved in the regulation of biological and developmental processes. However, there is no published research on the function of circRNAs in leishmaniasis. This is the first study to explore the expression profiles of circRNAs in leishmaniasis. GO and KEGG analyses were performed to determine the potential function of the host genes of differentially expressed circRNAs. CircRNA-miRNA-mRNA (ceRNA) regulatory network analysis and protein-protein interaction (PPI) networks were analyzed by R software and the STRING database, respectively. A total of 4664 significant differentially expressed circRNAs were identified and compared to those in control groups; a total of 1931 were up-regulated and 2733 were down-regulated. The host genes of differentially expressed circRNAs were enriched in ubiquitin-mediated proteolysis, endocytosis, the MAPK signaling pathway, renal cell carcinoma, autophagy and the ErbB signaling pathway. Then, five hub genes (BRCA1, CREBBP, EP300, PIK3R1, and CRK) were identified. This study provides new evidence of the change of differentially expressed circRNAs and its potential function in leishmaniasis. These results may provide novel insights and evidence for the diagnosis and treatment of leishmaniasis.

6.
Mol Biochem Parasitol ; 247: 111431, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813866

RESUMO

Angiostrongylus cantonensis is a zoonotic parasitic nematode that is the most common cause of human eosinophilic meningitis. The invasive apple snail Pomacea canaliculata is an important intermediate host of A. cantonensis and contributes to its spread. P. canaliculata control will help prevent its invasion and transmission of A. cantonensis. The new molluscicide PBQ (1-(4-chlorophenyl)-3-(pyridin-3-yl)urea) exhibits great potency against P. canaliculata and has low toxicity against mammals and non-target aquatic organisms. We studied the mode of action of PBQ using TMT-based comparative quantitative proteomics analysis between PBQ-treated and control P. canaliculata snails. A total of 3151 proteins were identified, and 245 of these proteins were significantly differentially expressed with 135 downregulated and 110 upregulated. GO and KEGG enrichment analyses identified GO terms and KEGG pathways involved in de novo purine biosynthesis, ribosome components and translation process were significantly enriched and downregulated. The results indicated that PBQ treatment had substantial effects on the synthesis of genetic material, translation process, and protein synthesis of P. canaliculata and were likely the main cause of snail mortality.


Assuntos
Angiostrongylus cantonensis , Gastrópodes , Infecções por Strongylida , Angiostrongylus cantonensis/genética , Animais , Humanos , Mamíferos , Proteômica
7.
China CDC Wkly ; 3(35): 736-740, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34594980

RESUMO

WHAT IS ALREADY KNOWN ON THIS TOPIC?: Triatoma rubrofasciata is a potential vector that can transmit American trypanosomiasis and was widely recorded in South of China. WHAT IS ADDED BY THIS REPORT?: Because of the low density of the triatomines, more habitats have not been discovered. This study mainly focused on predicting the geographical distribution of T. rubrofasciata under current and future climatic conditions in China using the MaxEnt model. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: The result showed that the distribution of T. rubrofasciata was largely affected by annual mean temperature and possessed a high potential for expansion in southern China in the future. Our predictions are useful for targeting surveillance efforts in high-risk areas and increasing the efficiency and accuracy of public health investigations and vector control efforts in China.

8.
Front Vet Sci ; 8: 779387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211533

RESUMO

The Qinghai-Tibet Plateau Area (QTPA) has a complex natural ecosystem, causing a greatly increased risk of spreading various tick-borne diseases including rickettsial infections, which are regarded as one of the oldest known vector-borne zoonoses. However, the information of one of its pathogen, spotted fever group Rickettsia (SFG Rickettsia), is limited in tick vectors and animals in this area. Therefore, this study focused on the investigation of SFG Rickettsia in tick vectors, yaks (Bos grunniens), and Tibetan sheep (Ovis aries) in the QTPA. A total of 1,000 samples were collected from nine sampling sites, including 425 of yaks, 309 of Tibetan sheep, 266 of ticks. By morphological examination, PCR, and sequencing, we confirmed the species of all collected ticks. All tick samples, all yak and Tibetan sheep blood samples were detected based on SFG Rickettsia ompA and sca4 gene. The results showed that all tick samples were identified to be Haemaphysalis qinghaiensis, and the positive rates of SFG Rickettsia were 5.9% (25/425), 0.3% (1/309), and 54.1% (144/266) in yaks, Tibetan sheep, and ticks, respectively. All positive samples were sequenced, and BLASTn analysis of the ompA gene sequences of SFG Rickettsia showed that all positive samples from animals and ticks had 99.04-100% identity with yak and horse isolates from Qinghai Province, China. BLASTn analysis of the sca4 gene sequences of SFG Rickettsia showed that all positive samples had 97.60-98.72% identity with tick isolates from Ukraine. In addition, the phylogenetic analysis showed that all the SFG Rickettsia ompA and sca4 sequences obtained from this study belong to the same clade as Rickettsia raoultii isolated from livestock and ticks from China and other countries. Molecularly, this study detected and characterized SFG Rickettsia both in the tick vectors and animals, suggesting that the relationship between SFG Rickettsia, tick species and animal hosts should be explored to understand their interrelationships, which provide a theoretical basis for preventing control of this pathogen.

9.
Mol Phylogenet Evol ; 155: 106999, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130300

RESUMO

East Asia has highly diverse and endemic biota due to its complex geological and climatic history and its diversified topography. The continental and insular distributions of land snail genus Acusta in East Asia provide a good opportunity to compare the evolutionary processes in this group under different biogeographical conditions. In this study, we inferred the evolutionary history of the land snail genus Acusta by a molecular phylogeny and investigated how the palaeogeographic events shaped species diversity and the distribution of the Acusta genus within the island arc. A concatenated dataset generated from sequences of one nuclear (ITS2) and two mitochondrial (16S, COI) gene fragments, include most of nominal taxa of the genus, four related species and one outgroup. We constructed the phylogeny and the evolutionary history of the genus through maximum-likelihood and Bayesian inference methods, using a Bayesian molecular clock and ancestral range estimation. Our results suggested that currently recognized species in Acusta are polyphyletic. The traditionally accepted concept of the affinity of Acusta and Bradybaena is not supported. The hypothesis of colonization via land bridges during the Pleistocene glaciations for the biota of East Asian islands is not supported. Instead, the origin and diversification of the genus Acusta was dated to the late Miocene-Pliocene from an area around North and Northeast China to South China and East Asian islands Three major evolutionary lineages were identified. Two of the major lineages demonstrate distinct evolutionary histories, as sympatric speciation is the major speciation process for the continental clade, while the insular clade originated from founder events. Taiwan functioned as an important source of diversification for species on the East Asian islands possibly through passive dispersal of different mechanisms. The sea level fluctuations caused by the Pleistocene glacial cycles play a role in the subsequent dispersion and diversification of species of the continental clade, such as the more recent range expansion of A. redfieldi from South China to Taiwan and Japan.


Assuntos
Biodiversidade , Filogeografia , Caramujos/classificação , Animais , Teorema de Bayes , Calibragem , Núcleo Celular/genética , Ásia Oriental , Genes Mitocondriais , Ilhas , Filogenia , Caramujos/genética , Fatores de Tempo
10.
Adv Parasitol ; 110: 269-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32563328

RESUMO

Rat lungworm Angiostrongylus cantonensis is the major infective agent of human eosinophilic meningitis (EM) in the world. The parasite was first noted in China in 1933. However, the public health importance was not realized until several EM outbreaks occurred recent years. Such disease is considered as emerging infectious disease in the People's Republic of China (P.R. China) since the major source of infection is invasive snail species, particularly Pomacea spp. National Institute of Parasitic Diseases (NIPD) initiated a systematic implementation research on this disease since 2003. Our researchers in NIPD developed the lung-microscopy for detecting A. cantonensis larvae in Pomacea snails and further accomplished the atlas of larval morphology by this method. We studied the determinants in infection, which helped the field collection of snails and improved the infection procedure in laboratory. Our researches promoted the promulgation of diagnosis criteria of angiostrongyliasis cantonensis by the Ministry of Health. We explored the molecular diversity of rat lungworm and its major snail host for development of source-tracing technique. The transmission modelling could provide the vulnerable area for surveillance. All the studies supported the surveillance system of EM caused by A. cantonensis in P.R. China. Such implementation research will provide a case study for control of emerging infectious diseases.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Surtos de Doenças/prevenção & controle , Programas Governamentais , Meningite , Programas Nacionais de Saúde , Infecções por Strongylida , Animais , China/epidemiologia , Humanos , Meningite/epidemiologia , Meningite/parasitologia , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/prevenção & controle
11.
China CDC Wkly ; 2(33): 629-633, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34594725

RESUMO

What is already known on this topic? Triatomines, also known as kissing bugs, are widespread vectors for Chagas disease which affects 6-8 million people worldwide. Two species of triatomines have been previously reported in China. What is added by this report? This study showed data from the first investigation of triatomine distribution in China. Triatoma rubrofasciata and a novel species of triatomine in 170 habitats in 30 cities in southern China were recorded in this investigation. What are the implications for public health practice? Considering the worldwide spread of Chagas disease and new species of trypanosomiasis, strengthening the monitoring of triatomines and their associated diseases in southern China is vital to prevent and control these diseases.

12.
BMC Microbiol ; 19(1): 273, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805864

RESUMO

BACKGROUND: Gut microbes can contribute to their hosts in food digestion, nutrient absorption, and inhibiting the growth of pathogens. However, only limited studies have focused on the gut microbiota of freshwater snails. Pomacea canaliculata is considered one of the worst invasive alien species in the world. Elucidating the diversity and composition of the microbiota in the gut of P. canaliculata snails may be helpful for better understanding the widespread invasion of this snail species. In this study, the buccal masses, stomachs, and intestines were isolated from seven P. canaliculata snails. The diversity and composition of the microbiota in the three gut sections were then investigated based on high-throughput Illumina sequencing targeting the V3-V4 regions of the 16S rRNA gene. RESULTS: The diversity of the microbiota was highest in the intestine but lowest in the buccal mass. A total of 29 phyla and 111 genera of bacteria were identified in all of the samples. In general, Ochrobactrum, a genus of putative cellulose-degrading bacteria, was the most abundant (overall relative abundance: 13.6%), followed by Sediminibacterium (9.7%), Desulfovibrio (7.8%), an unclassified genus in the family Aeromonadaceae (5.4%), and Cloacibacterium (5.4%). The composition of the microbiota was diverse among the different gut sections. Ochrobactrum (relative abundance: 23.15% ± 7.92%) and Sediminibacterium (16.95 ± 5.70%) were most abundant in the stomach, an unclassified genus in the family Porphyromonadaceae (14.28 ± 7.29%) and Leptotrichia (8.70 ± 4.46%) were highest in the buccal mass, and two genera in the families Aeromonadaceae (7.55 ± 4.53%) and Mollicutes (13.47 ± 13.03%) were highest in the intestine. CONCLUSIONS: The diversity and composition of the microbiome vary among different gut sections of P. canaliculata snails. Putative cellulose-degrading bacteria are enriched in the gut of P. canaliculata.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Caramujos/microbiologia , Animais , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/microbiologia , RNA Ribossômico 16S/genética , Estômago/microbiologia
13.
Sci Data ; 6(1): 267, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704938

RESUMO

Pufferfish are ideal models for vertebrate chromosome evolution studies. The yellowbelly pufferfish, Takifugu flavidus, is an important marine fish species in the aquaculture industry and ecology of East Asia. The chromosome assembly of the species could facilitate the study of chromosome evolution and functional gene mapping. To this end, 44, 27 and 50 Gb reads were generated for genome assembly using Illumina, PacBio and Hi-C sequencing technologies, respectively. More than 13 Gb full-length transcripts were sequenced on the PacBio platform. A 366 Mb genome was obtained with the contig of 4.4 Mb and scaffold N50 length of 15.7 Mb. 266 contigs were reliably assembled into 22 chromosomes, representing 95.9% of the total genome. A total of 29,416 protein-coding genes were predicted and 28,071 genes were functionally annotated. More than 97.7% of the BUSCO genes were successfully detected in the genome. The genome resource in this work will be used for the conservation and population genetics of the yellowbelly pufferfish, as well as in vertebrate chromosome evolution studies.


Assuntos
Genoma , Tetraodontiformes/genética , Animais , Cromossomos , Anotação de Sequência Molecular
14.
Gigascience ; 8(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634388

RESUMO

BACKGROUND: Achatina fulica, the giant African snail, is the largest terrestrial mollusk species. Owing to its voracious appetite, wide environmental adaptability, high growth rate, and reproductive capacity, it has become an invasive species across the world, mainly in Southeast Asia, Japan, the western Pacific islands, and China. This pest can damage agricultural crops and is an intermediate host of many parasites that can threaten human health. However, genomic information of A. fulica remains limited, hindering genetic and genomic studies for invasion control and management of the species. FINDINGS: Using a k-mer-based method, we estimated the A. fulica genome size to be 2.12 Gb, with a high repeat content up to 71%. Roughly 101.6 Gb genomic long-read data of A. fulica were generated from the Pacific Biosciences sequencing platform and assembled to produce a first A. fulica genome of 1.85 Gb with a contig N50 length of 726 kb. Using contact information from the Hi-C sequencing data, we successfully anchored 99.32% contig sequences into 31 chromosomes, leading to the final contig and scaffold N50 length of 721 kb and 59.6 Mb, respectively. The continuity, completeness, and accuracy were evaluated by genome comparison with other mollusk genomes, BUSCO assessment, and genomic read mapping. A total of 23,726 protein-coding genes were predicted from the assembled genome, among which 96.34% of the genes were functionally annotated. The phylogenetic analysis using whole-genome protein-coding genes revealed that A. fulica separated from a common ancestor with Biomphalaria glabrata ∼182 million years ago. CONCLUSION: To our knowledge, the A. fulica genome is the first terrestrial mollusk genome published to date. The chromosome sequence of A. fulica will provide the research community with a valuable resource for population genetics and environmental adaptation studies for the species, as well as investigations of the chromosome-level of evolution within mollusks.


Assuntos
Cromossomos , Caramujos/genética , Animais , Biblioteca Gênica , Genoma , Genômica/métodos , Espécies Introduzidas , Filogenia , Análise de Sequência de RNA
15.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425588

RESUMO

BACKGROUND: Triatoma rubrofasciata is a widespread pathogen vector for Chagas disease, an illness that affects approximately 7 million people worldwide. Despite its importance to human health, its evolutionary origin has not been conclusively determined. A reference genome for T. rubrofasciata is not yet available. FINDING: We have sequenced the genome of a female individual with T. rubrofasciatausing a single molecular DNA sequencing technology (i.e., PacBio Sequel platform) and have successfully reconstructed a whole-genome (680-Mb) assembly that covers 90% of the nuclear genome (757 Mb). Through Hi-C analysis, we have reconstructed full-length chromosomes of this female individual that has 13 unique chromosomes (2n = 24 = 22 + X1 + X2) with a contig N50 of 2.72 Mb and a scaffold N50 of 50.7 Mb. This genome has achieved a high base-level accuracy of 99.99%. This platinum-grade genome assembly has 12,691 annotated protein-coding genes. More than 95.1% of BUSCO genes were single-copy completed, indicating a high level of completeness of the genome. CONCLUSION: The platinum-grade genome assembly and its annotation provide valuable information for future in-depth comparative genomics studies, including sexual determination analysis in T. rubrofasciata and the pathogenesis of Chagas disease.


Assuntos
Cromossomos de Insetos , Genoma , Genômica , Insetos Vetores/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Biologia Computacional/métodos , Genômica/métodos , Insetos Vetores/classificação , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico , Triatoma/parasitologia
16.
Trop Med Infect Dis ; 3(4)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572694

RESUMO

The transmission of some schistosome parasites is dependent on the planorbid snail hosts. Bulinus truncatus is important in urinary schistosomiasis epidemiology in Africa. Hence, there is a need to define the snails' phylogeography. This study assessed the population genetic structure of B. truncatus from Giza and Sharkia (Egypt), Barakat (Sudan) and Madziwa, Shamva District (Zimbabwe) using mitochondrial cytochrome oxidase subunit 1 gene (COI) and internal transcribed spacer 1 (ITS 1) markers. COI was sequenced from 94 B. truncatus samples including 38 (Egypt), 36 (Sudan) and 20 (Zimbabwe). However, only 51 ITS 1 sequences were identified from Egypt (28) and Sudan (23) (because of failure in either amplification or sequencing). The unique COI haplotypes of B. truncatus sequences observed were 6, 11, and 6 for Egypt, Sudan, and Zimbabwe, respectively. Also, 3 and 2 unique ITS 1 haplotypes were observed in sequences from Egypt and Sudan respectively. Mitochondrial DNA sequences from Sudan and Zimbabwe indicated high haplotype diversity with 0.768 and 0.784, respectively, while relatively low haplotype diversity was also observed for sequences from Egypt (0.334). The location of populations from Egypt and Sudan on the B. truncatus clade agrees with the location of both countries geographically. The clustering of the Zimbabwe sequences on different locations on the clade can be attributed to individuals with different genotypes within the population. No significant variation was observed within B. truncatus populations from Egypt and Sudan as indicated by the ITS 1 tree. This study investigated the genetic diversity of B. truncatus from Giza and Sharkia (Egypt), Barakat area (Sudan), and Madziwa (Zimbabwe), which is necessary for snail host surveillance in the study areas and also provided genomic data of this important snail species from the sampled countries.

17.
Infect Dis Poverty ; 7(1): 120, 2018 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30526682

RESUMO

BACKGROUND: Schistosomiasis is a common parasitic disease designated as a neglected tropical disease by the World Health Organization. Schistosomiasis mansoni is a form of the disease that is caused by the digenean trematode Schistosoma mansoni, transmitted through Biomphalaria spp. as an intermediate host. Biomphalaria was introduced to Hong Kong, China in aquatic plants shipments coming from Brazil and the snail rapidly established its habitats in southern China. Earlier studies of Biomphalaria spp. introduced to southern China identified the snails as Biomphalaria straminea, one of the susceptible species implicated in S. mansoni transmission in South America. However, recent molecular investigations also indicated the presence of another South American species, B. kuhniana, which is refractory to infection. As such, it is important to identify accurately the species currently distributed in southern China, especially with emerging reports of active S. mansoni infections in Chinese workers returning from Africa. METHODS: We combined morphological and molecular taxonomy tools to precisely identify Biomphalaria spp. distributed in Guangdong Province, southern China. In order to clearly understand the molecular profile of the species, we constructed a phylogeny using mtDNA data (COI and 16S rRNA sequences) from six populations of Biomphalaria spp. from Shenzhen City in Guangdong Province. In addition, we examined the external morphology of the shell and internal anatomy of the reproductive organs. RESULTS: Both morphological and molecular evidences indicated a close affinity between Biomphalaria spp. populations from Guangdong and B. straminea from Brazil. The shell morphology was roughly identical in all the populations collected with rounded whorls on one side and subangulated on the other, a smooth periphery, an egg-shaped aperture bowed to one side, and a deep umbilicus. The shape and number of prostate diverticula (ranged from 11.67 to 17.67) in Guangdong populations supports its close affinity to B. straminea rather than B. kuhniana. Molecular analysis did not conflict with morphological analysis. Little genetic differentiation was observed within Biomphalaria populations collected. Phylogenetic analysis of COI and 16S rRNA haplotypes from snails collected and B. straminea sequences from Brazil and China using Bayesian inference revealed that Guangdong populations were clustered in one clade with B. straminea from Hong Kong of China and B. straminea from Brazil indicating their close affinity to each other. CONCLUSIONS: Data obtained in the current study clearly show that the populations of Biomphalaria spp. investigated are B. straminea, and we assume that those snails were either introduced via passive dispersal from Hong Kong of China or as a result of multiple introduction routes from Brazil.


Assuntos
Biomphalaria/genética , Biomphalaria/fisiologia , Espécies Introduzidas , Distribuição Animal , Animais , China , Haplótipos , Filogenia , RNA Ribossômico 16S/genética
18.
Infect Dis Poverty ; 7(1): 100, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318019

RESUMO

BACKGROUND: Angiostrongyliasis is a food-borne parasitic zoonosis. Human infection is caused by infection with the third-stage larvae of Angiostrongylus cantonensis. The life cycle of A. cantonensis involves rodents as definitive hosts and molluscs as intermediate hosts. This study aims to investigate on the infection status and characteristics of spatial distribution of these hosts, which are key components in the strategy for the prevention and control of angiostrongyliasis. METHODS: Three villages from Nanao Island, Guangdong Province, China, were chosen as study area by stratified random sampling. The density and natural infection of Pomacea canaliculata and various rat species were surveyed every three months from December 2015 to September 2016, with spatial correlations of the positive P. canaliculata and the infection rates analysed by ArcGIS, scan statistics, ordinary least squares (OLS) and geographically weighted regression (GWR) models. RESULTS: A total of 2192 P. canaliculata specimens were collected from the field, of which 1190 were randomly chosen to be examined for third-stage larvae of A. cantonensis. Seventy-two Angiostrongylus-infected snails were found, which represents a larval infection rate of 6.1% (72/1190). In total, 110 rats including 85 Rattus norvegicus, 10 R. flavipectus, one R. losea and 14 Suncus murinus were captured, and 32 individuals were positive (for adult worms), representing an infection rate of 29.1% of the definitive hosts (32/110). Worms were only found in R. norvegicus and R. flavipectus, representing a prevalence of 36.5% (31/85) and 10% (1/10), respectively in these species, but none in R. losea and S. murinus, despite testing as many as 32 of the latter species. Statistically, spatial correlation and spatial clusters in the spatial distribution of positive P. canaliculata and positive rats existed. Most of the spatial variability of the host infection rates came from spatial autocorrelation. Nine spatial clusters with respect to positive P. canaliculata were identified, but only two correlated to infection rates. The results show that corrected Akaike information criterion, R2, R2 adjusted and σ2 in the GWR model were superior to those in the OLS model. CONCLUSIONS: P. canaliculata and rats were widely distributed in Nanao Island and positive infection has also been found in the hosts, demonstrating that there was a risk of angiostrongyliasis in this region of China. The distribution of positive P. canaliculata and rats exhibited spatial correlation, and the GWR model had advantage over the OLS model in the spatial analysis of hosts of A. cantonensis.


Assuntos
Angiostrongylus cantonensis , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Animais , China/epidemiologia , Geografia , Humanos , Ratos , Caramujos/parasitologia , Análise Espacial , Infecções por Strongylida/epidemiologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/transmissão , Zoonoses
19.
Infect Dis Poverty ; 7(1): 29, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29615124

RESUMO

BACKGROUND: Snail intermediate hosts play active roles in the transmission of snail-borne trematode infections in Africa. A good knowledge of snail-borne diseases epidemiology particularly snail intermediate host populations would provide the necessary impetus to complementing existing control strategy. MAIN BODY: This review highlights the importance of molecular approaches in differentiating snail hosts population structure and the need to provide adequate information on snail host populations by updating snail hosts genome database for Africa, in order to equip different stakeholders with adequate information on the ecology of snail intermediate hosts and their roles in the transmission of different diseases. Also, we identify the gaps and areas where there is need for urgent intervention to facilitate effective integrated control of schistosomiasis and other snail-borne trematode infections. CONCLUSIONS: Prioritizing snail studies, especially snail differentiation using molecular tools will boost disease surveillance and also enhance efficient schistosomaisis control programme in Africa.


Assuntos
Vetores de Doenças , Genoma , Caramujos/classificação , Caramujos/genética , Infecções por Trematódeos , África , Animais , Vetores de Doenças/classificação , Humanos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Esquistossomose/transmissão , Caramujos/parasitologia , Trematódeos/fisiologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/prevenção & controle , Infecções por Trematódeos/transmissão
20.
Acta Trop ; 183: 32-35, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574000

RESUMO

The rat lungworm Angiostrongylus cantonensis causes human eosinophilic meningitis and it is endemic in Southeast Asia, but little is known about its distribution in Laos, Cambodia and Vietnam. We conducted a multi-country survey for A. cantonensis in these countries to estimate its prevalence in snails along the Mekong River and the east coast of Vietnam. We identified Angiostrongylus species by morphological and molecular analysis. We found A. cantonensis in the invasive snail, Pomacea spp. The wide accessibility of Pomacea snails, along with their infection by A. cantonensis, indicates that this snail species could be used in surveillance for preventing outbreaks of eosinophilic meningitis.


Assuntos
Angiostrongylus cantonensis/crescimento & desenvolvimento , Vetores de Doenças , Meningite/epidemiologia , Meningite/parasitologia , Caramujos/parasitologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/transmissão , Animais , Camboja/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Humanos , Laos/epidemiologia , Prevalência , Ratos , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...