Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Lipid Res ; : 100570, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795858

RESUMO

Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, etc. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-ß-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and ß-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific for this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.

2.
Anal Chem ; 96(23): 9576-9584, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808923

RESUMO

GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.


Assuntos
DNA , Hibridização de Ácido Nucleico , Humanos , DNA/química , Proteínas Ligadas por GPI/metabolismo , Animais , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Corantes Fluorescentes/química , Azidas/química
3.
J Med Chem ; 67(9): 7458-7469, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634150

RESUMO

Adjuvant is an integral part of all vaccine formulations but only a few adjuvants with limited efficacies or application scopes are available. Thus, developing more robust and diverse adjuvants is necessary. To this end, a new class of adjuvants having α- and ß-rhamnose (Rha) attached to the 1- and 6'-positions of monophosphoryl lipid A (MPLA) was designed, synthesized, and immunologically evaluated in mice. The results indicated a synergistic effect of MPLA and Rha, two immunostimulators that function via interacting with toll-like receptor 4 and recruiting endogenous anti-Rha antibodies, respectively. All the tested MPLA-Rha conjugates exhibited potent adjuvant activities to promote antibody production against both protein and carbohydrate antigens. Overall, MPLA-α-Rha exhibited better activities than MPLA-ß-Rha, and 6'-linked conjugates were slightly better than 1-linked ones. Particularly, MPLA-1-α-Rha and MPLA-6'-α-Rha were the most effective adjuvants in promoting IgG antibody responses against protein antigen keyhole limpet hemocyanin and carbohydrate antigen sTn, respectively.


Assuntos
Lipídeo A , Ramnose , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/farmacologia , Lipídeo A/imunologia , Animais , Ramnose/química , Ramnose/imunologia , Ramnose/farmacologia , Camundongos , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/farmacologia , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/síntese química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Hemocianinas/química , Hemocianinas/imunologia
4.
Angew Chem Int Ed Engl ; 63(20): e202401921, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38498603

RESUMO

In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.


Assuntos
Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Microbolhas , Engenharia Metabólica
5.
Appl Magn Reson ; 55(1-3): 317-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469359

RESUMO

As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.

6.
Curr Opin Chem Biol ; 78: 102421, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181647

RESUMO

Glycosylphosphatidylinositol (GPI) attachment to the C-terminus of proteins is a prevalent posttranslational modification in eukaryotic species, and GPIs help anchor proteins to the cell surface. GPI-anchored proteins (GPI-APs) play a key role in various biological events. However, GPI-APs are difficult to access and investigate. To tackle the problem, chemical and chemoenzymatic methods have been explored for the preparation of GPI-APs, as well as GPI probes that facilitate the study of GPIs on live cells. Substantial progress has also been made regarding GPI-AP biosynthesis, which is helpful for developing new synthetic methods for GPI-APs. This article reviews the recent advancements in the study of GPI-AP biosynthesis, GPI-AP synthesis, and GPI interaction with the cell membrane utilizing synthetic probes.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Glicosilfosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional
7.
Chemistry ; 30(8): e202303047, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37966101

RESUMO

Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.


Assuntos
Glicosilfosfatidilinositóis , Polissacarídeos , Glicosilfosfatidilinositóis/química , Membrana Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais
8.
J Org Chem ; 89(2): 1345-1352, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38153341

RESUMO

A glycosylphosphatidylinositol (GPI) derivative with biotin linked to its mannose III 6-O-position was prepared by a convergent strategy. This biotinylated GPI was demonstrated to bind avidinated proteins readily through biotin-avidin interaction and, therefore, can serve as a universal platform to access various biologically significant GPI-anchored protein analogues.


Assuntos
Biotina , Glicosilfosfatidilinositóis , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI
9.
Res Sq ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398188

RESUMO

As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.

10.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298512

RESUMO

GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.


Assuntos
Gangliosídeo G(M1) , Gangliosidose GM1 , Humanos , Gangliosídeo G(M1)/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Glicoesfingolipídeos/metabolismo
11.
Chembiochem ; 24(13): e202200761, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36935354

RESUMO

Glycosphingolipid (GSL) and glycosylphosphatidylinositol (GPI) are the two major glycolipids expressed by eukaryotic cells, and their metabolisms share the same machineries. Moreover, both GSLs and GPI-anchored proteins (GPI-APs) are localized in the cholesterol-rich regions, namely the lipid rafts, of the cell membrane, where many other signaling molecules are compartmentalized as well. Therefore, the interaction between GSLs and GPI-APs and their interactions with other molecules in the lipid rafts are inevitable. This review is focused on the influences of GSLs and GPI-APs on each other's biosynthesis, trafficking, cell membrane distribution, and biological functions, such as signal transduction.


Assuntos
Glicoesfingolipídeos , Glicosilfosfatidilinositóis , Glicoesfingolipídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Proteínas/metabolismo , Microdomínios da Membrana/metabolismo
12.
Org Lett ; 25(12): 2088-2092, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36939185

RESUMO

Two glycosylphosphatidylinositol (GPI) derivatives having an alkynyl group at different positions were derived from the same orthogonally protected pentasaccharide that in turn was assembled by a convergent [3+2] glycosylation strategy. The resultant alkynylated GPIs are useful biological probes and are suitable for further modification by click reaction to obtain other GPI probes. The pentasaccharide is a versatile platform for the synthesis of various uniquely functionalized GPI probes.


Assuntos
Glicosilfosfatidilinositóis , Oligossacarídeos
13.
J Phys Chem B ; 127(8): 1749-1757, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36808907

RESUMO

Sialoglycans on HeLa cells were labeled with a nitroxide spin radical through enzymatic glycoengineering (EGE)-mediated installation of azide-modified sialic acid (Neu5Ac9N3) and then click reaction-based attachment of a nitroxide spin radical. α2,6-Sialyltransferase (ST) Pd2,6ST and α2,3-ST CSTII were used for EGE to install α2,6- and α2,3-linked Neu5Ac9N3, respectively. The spin-labeled cells were analyzed by X-band continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to gain insights into the dynamics and organizations of cell surface α2,6- and α2,3-sialoglycans. Simulations of the EPR spectra revealed average fast- and intermediate-motion components for the spin radicals in both sialoglycans. However, α2,6- and α2,3-sialoglycans in HeLa cells possess different distributions of the two components, e.g., a higher average population of the intermediate-motion component for α2,6-sialoglycans (78%) than that for α2,3-sialoglycans (53%). Thus, the average mobility of spin radicals in α2,3-sialoglycans was higher than that in α2,6-sialoglycans. Given the fact that a spin-labeled sialic acid residue attached to the 6-O-position of galactose/N-acetyl-galactosamine would experience less steric hindrance and show more flexibility than that attached to the 3-O-position, these results may reflect the differences in local crowding/packing that restrict the spin-label and sialic acid motion for α2,6-linked sialoglycans. The studies further suggest that Pd2,6ST and CSTII may have different preferences for glycan substrates in the complex environment of the extracellular matrix. The discoveries of this work are biologically important as they are useful for interpreting the different functions of α2,6- and α2,3-sialoglycans and indicate the possibility of using Pd2,6ST and CSTII to target different glycoconjugates on cells.


Assuntos
Ácido N-Acetilneuramínico , Óxidos de Nitrogênio , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Células HeLa , Óxidos de Nitrogênio/química , Marcadores de Spin
14.
Biochem Biophys Res Commun ; 645: 103-109, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682329

RESUMO

Glycosylphosphatidylinositol (GPI) anchorage is one of the most common mechanisms to attach proteins to the plasma membrane of eukaryotic cells. GPI-anchored proteins (GPI-APs) play a critical role in many biological processes but are difficult to study. Here, a new method was developed for the effective and selective metabolic engineering and labeling of cell surface GPI-APs with an azide-modified phosphatidylinositol (PI) as the biosynthetic precursor of GPIs. It was demonstrated that this azido-PI derivative was taken up by HeLa cells and incorporated into the biosynthetic pathway of GPIs to present azide-labeled GPI-APs on the live cell surface. The azido group was used as a molecular handle to install other labels through a biocompatible click reaction to enable various biological studies, e.g., fluorescent imaging and protein pull-down, which can help explore the functions of GPI-APs and discover new GPI-APs.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Células HeLa , Azidas , Engenharia Metabólica , Membrana Celular/metabolismo
15.
J Proteome Res ; 22(3): 919-930, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700487

RESUMO

Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Humanos , Glicosilfosfatidilinositóis/análise , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Células HeLa , Membrana Celular/química , Proteínas de Membrana/metabolismo
16.
ACS Infect Dis ; 9(2): 178-212, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706246

RESUMO

The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.


Assuntos
Vacinas Bacterianas , Polissacarídeos Bacterianos , Humanos , Vacinas Conjugadas , Bactérias , Antígenos
17.
Chemistry ; 29(17): e202203457, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36445784

RESUMO

A new, bifunctional glycosylphosphatidylinositol (GPI) derivative containing the highly conserved core structure of all natural GPI anchors with a photoactivable diazirine in the lipid chain and clickable alkynes in the glycan was synthesized by a convergent [3+2] glycosylation strategy with late stage protecting group manipulation and regioselective phosphorylation. The challenges of this synthesis were due to the presence of several distinctive functional groups in the synthetic target, which complicated the protection tactics, in addition to the inherent difficulties associated with GPI synthesis. This bifunctional GPI derivative can cross-react with molecules in proximity upon photoactivation and be subsequently labeled with other molecular tags via click reaction. Therefore, it should be a valuable probe for biological studies of GPIs, such as analysis of GPI-interacting membrane proteins, and gaining insights into their functional mechanisms.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Glicosilfosfatidilinositóis/química , Proteínas de Membrana/metabolismo , Glicosilação , Fosforilação , Biologia
18.
J Carbohydr Chem ; 41(2-3): 63-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561362

RESUMO

Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.

19.
J Carbohydr Chem ; 41(4): 238-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540620

RESUMO

A diacyl phosphatidylinositol (PI) derivative with an azide linked to its inositol C4-position was effectively synthesized in 19 steps for the longest linear sequence and in a ca. 1% overall yield from 1,2-distearoyl-sn-glycerol and D-glucose. This compound was designed as a biosynthetic precursor of glycosylphosphatidylinositol (GPI) anchors. Its azide would enable further modification to introduce other molecular tags by biocompatible click reaction. Therefore, it can be a useful probe for metabolic engineering of cell surface GPI anchors and GPI-anchored proteins.

20.
Cancer Cell Int ; 22(1): 344, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36348490

RESUMO

OBJECTIVE: Intestinal alkaline sphingomyelinase (alk-SMase) generates ceramide and inactivates platelet-activating factor associated with digestion and inhibition of cancer. There is few study to analyze the correlated function and characterize the genes related to alk-SMase comprehensively. We characterised transcriptome landscapes of intestine tissues from alk-SMase knockout (KO) mice aiming to identify novel associated genes and research targets. METHODS: We performed the high-resolution RNA sequencing of alk-SMase KO mice and compared them to wild type (WT) mice. Differentially expressed genes (DEGs) for the training group were screened. Functional enrichment analysis of the DEGs between KO mice and WT mice was implemented using the Database for Annotation, Visualization and Integrated Discovery (DAVID). An integrated protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) network was chose to study the relationship of differentially expressed gene. Moreover, quantitative real-time polymerase chain reaction (qPCR) was further used to validate the accuracy of RNA-seq technology. RESULTS: Our RNA-seq data found 97 differentially expressed mRNAs between the WT mice and alk-SMase gene NPP7 KO mice, in which 32 were significantly up-regulated and 65 were down-regulated, including protein coding genes, non-coding RNAs. Notably, the results of gene ontology functional enrichment analysis indicated that DEGs were functionally associated with the immune response, regulation of cell proliferation and development related terms. Additionally, an integrated network analysis was shown that some modules was significantly related to alk-SMase and with accordance of previously results. We chose 6 of these genes randomly were validated the accuracy of RNA-seq technology using qPCR and 2 genes showed difference significantly (P < 0.05). CONCLUSIONS: We investigated the potential biological significant of alk-SMase with high resolution genome-wide transcriptome of alk-SMase knockout mice. The results revealed new insight into the functional modules related to alk-SMase was involved in the intestinal related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...