Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 051001, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800455

RESUMO

The randomness of the quantum tunneling process induces superhorizon curvature perturbations during cosmological first-order phase transitions. We for the first time utilize curvature perturbations to constrain the phase transition parameters, and find that the observations of the cosmic microwave background spectrum distortion and the ultracompact minihalo abundance can give strict constraints on the phase transitions below 100 GeV, especially for the low-scale phase transitions and some electroweak phase transitions. The current constraints on the phase transition parameters are largely extended by the results of this work, therefore provide an novel approach to probe related new physics.

2.
Natl Sci Rev ; 9(2): nwab054, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35211320

RESUMO

The Hubble parameter is one of the central parameters in modern cosmology, and describes the present expansion rate of the universe. The values of the parameter inferred from late-time observations are systematically higher than those inferred from early-time measurements by about [Formula: see text]. To reach a robust conclusion, independent probes with accuracy at percent levels are crucial. Gravitational waves from compact binary coalescence events can be formulated into the standard siren approach to provide an independent Hubble parameter measurement. The future space-borne gravitational wave observatory network, such as the LISA-Taiji network, will be able to measure the gravitational wave signals in the millihertz bands with unprecedented accuracy. By including several statistical and instrumental noises, we show that, within a five-year operation time, the LISA-Taiji network is able to constrain the Hubble parameter within [Formula: see text] accuracy, and possibly beats the scatters down to [Formula: see text] or even better.

3.
Phys Rev Lett ; 126(14): 141303, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891446

RESUMO

We investigate the stochastic gravitational wave background (SGWB) from cosmic domain walls (DWs) caused by quantum fluctuations of a light scalar field ϕ during inflation. Large-scale perturbations of ϕ lead to large-scale perturbations of DW energy density and anisotropies in the SGWB. We find that the angular power spectrum of this SGWB is scale invariant and at least of the order of 10^{-2}, which is a distinctive feature of observational interest. Since we have not detected primordial gravitational waves yet, anisotropies of the SGWB provide a nontrivial opportunity to verify the rationality of inflation and detect the energy scale of inflation, especially for low-scale inflationary models. Square kilometer array has the opportunity to detect the anisotropies of such SGWBs. The common-spectrum process observed recently by NANOGrav could also be interpreted by the SGWB from cosmic DWs.

4.
Research (Wash D C) ; 2021: 6014164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623919

RESUMO

We explore a potential LISA-Taiji network to fast and accurately localize the coalescing massive black hole binaries. For an equal-mass binary located at redshift of 1 with a total intrinsic mass of 105 M ⊙, the LISA-Taiji network may achieve almost four orders of magnitude improvement on the source localization region compared to an individual detector. The precision measurement of sky location from the gravitational-wave signal may completely identify the host galaxy with low redshifts prior to the final black hole merger. Such identification of the host galaxy is vital for the follow-up variability in electromagnetic emissions of the circumbinary disc when the binary merges to a new black hole and enables the coalescing massive black hole binaries to be used as a standard siren to probe the expansion history of the Universe.

5.
Phys Rev Lett ; 120(3): 031301, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400500

RESUMO

We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...