Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836842

RESUMO

BACKGROUND: Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS: We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS: Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS: Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.


Assuntos
Cirrose Hepática , Metabolômica , Sepse , Humanos , Masculino , Feminino , Cirrose Hepática/sangue , Cirrose Hepática/mortalidade , Criança , Adolescente , Sepse/sangue , Sepse/mortalidade , Sepse/microbiologia , Biomarcadores/sangue , Pré-Escolar , Aprendizado de Máquina , Metaboloma , Proteínas de Bactérias/sangue
2.
Br J Nutr ; 131(5): 773-785, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886840

RESUMO

The prevalence of diet-related obesity is increasing dramatically worldwide, making it important to understand the associated metabolic alterations in the liver. It is well known that obesity is a multifactorial condition that is the result of complex integration between many gene expressions and dietary factors. Obesity alone or in conjunction with other chronic diseases such as diabetes and insulin resistance causes many health problems and is considered a major risk factor for developing non-alcoholic steatohepatitis (NASH) and cirrhosis. In this study, we aimed to understand the molecular mechanisms underlying early hepatic changes in the pathophysiology of high-fat diet (HFD)-induced abdominal obesity in rats. Hepatic protein profiles of normal diet and HFD-induced obesity for 24 weeks were analysed using two-dimensional differential gel electrophoresis (DIGE) and protein identification by MS. Fifty-two proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and computer-assisted DIGE image software analysis showed that eighteen major proteins were significantly differentially expressed between comparable groups, with 2·0­4·0-fold change/more (P < 0·01). These proteins are regulated in response to a HFD, and differentially expressed proteins are involved in key metabolic pathways such as lipid metabolism, energy metabolism, detoxification, urea cycle and hepatic Ca homoeostasis. In addition, Western blot and immunohistochemistry of liver-specific arginase-1 (Arg-1) showed significant increased expression in the liver of high-fat-fed rats (P < 0·01). Further, Arg-1 expression was correlated with NASH patients with obesity-related fibrosis (F0­F4). It is concluded that high-fat content may affect changes in liver pathways and may be a therapeutic target for obesity-related liver disease. Arg-1 expressions may be a potential pathological marker for assessing the progression of the disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteômica , Fígado/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
3.
Hepatol Commun ; 4(1): 50-65, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909355

RESUMO

Hyperoxidized albumin promotes inflammation and modulates several immune cells in severe alcoholic hepatitis (SAH). Platelets mediate inflammation by interacting with immune cells, endothelium, and other cells. The role of hyperoxidized albumin in platelet activation and alteration of platelet phenotype/functions is not known. Quantitative platelet proteomics performed in 10 patients with SAH was compared with 10 patients with alcoholic cirrhosis and 10 healthy controls, respectively. Dysregulated pathways were identified and validated in a separate cohort (n = 40). Healthy platelets were exposed to patient plasma or purified albumin or ex vivo modified albumin (human-mercaptalbumin, humannonmercaptalbumin-1, and human nonmercaptalbumin 2) in the presence or absence of CD36 blockade, and platelet secretome was analyzed. Two hundred and two up-regulated proteins linked to platelet activation, complement regulation, lipid transportation, and 321 down-regulated proteins related to platelet hemostasis and coagulation (fold change ± 1.5, P < 0.01) were identified. Blood transcription module enrichment showed an inflammatory phenotype of SAH platelet. Increased level of platelet factor-4, P-selectin, and soluble cluster of differentiation-40 ligand correlated with severity (Model for End-Stage Liver Disease score, r > 0.3, P < 0.05) in SAH. Transcripts linked to platelet activation (increased) and granular secretions (decreased in SAH) correlated with disease severity. SNARE (soluble-N-ethylmaleimide-sensitive-factor-activating-protein-receptor) complex proteins (SNAP-23 [synaptosomal-associated protein 23] and VAMP-8 [vesicle-associated membrane protein 3]) were down-regulated in SAH platelets (P < 0.05). In vitro stimulation of healthy platelets showed enhanced activation with patient plasma, or purified albumin-treatment blocking of CD36 blunted this effect (P < 0.05). Ex vivo modified albumin (primarily nonmercaptalbumin-human nonmercaptalbumin 2 [HNA2; 1 mg/mL]) showed high activation and aggregation and intracellular reactive oxygen species production in healthy platelets (P < 0.05), which significantly reduced after CD36 neutralization. Platelet secretome showed reduced inflammatory mediators and increased repair proteins. Conclusion: Hyperoxidized albumin triggers platelet activation (possibly through the CD36 receptor), promotes inflammation and oxidative stress, and contributes to disease severity in patients with SAH.

4.
Hepatol Commun ; 3(12): 1598-1625, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832570

RESUMO

Severe alcoholic hepatitis (SAH) has high mortality. Dysregulated lipid transport and metabolism in liver/macrophages contributes to disease pathophysiology. Paraoxonase/arylesterase 1 (PON1), a liver-specific enzyme, inhibits oxidation of phospholipids and prevents lipid-mediated oxidative damage. However, its functional contribution in macrophage-mediated hepatic injury warrants elucidation. Plasma proteome of patients with SAH (n = 20), alcoholic cirrhosis (n = 20), and healthy controls was analyzed. Dysregulated pathways were identified, validated, and correlated with severity and outcomes in 200 patients with SAH. Tohoku-Hospital-Pediatrics-1 (THP1)-derived macrophages were treated with plasma from study groups in the presence/absence of recombinant PON1 and the phenotype; intracellular lipid bodies and linked functions were evaluated. In patients with SAH, 208 proteins were >1.5 fold differentially regulated (32 up-regulated and 176 down-regulated; P < 0.01).Validation studies confirmed lower levels of lipid transporter proteins (Pon1, apolipoprotein [Apo]B, ApoA1, ApoA2, and ApoC3; P < 0.01). Low PON1 levels inversely correlated with severity and mortality (r2 > 0.3; hazard ratio, 0.91; P < 0.01) and predicted nonsurvivors (area under the receiver operating characteristic curve, 0.86; cut-off, <18 µg/mL; log rank, <0.01). Low PON1 levels corroborated with increased oxidized low-density lipoprotein levels, intracellular lipid bodies, lipid uptake, lipid metabolism, biosynthesis, and alternative macrophage activation genes in nonsurvivors (P < 0.01). Importantly, in vitro recombinant PON1 treatment on THP1 macrophages reversed these changes (P < 0.01), specifically by alteration in expression of clusters of differentiation 36 (CD36) and adenosine triphosphate-binding cassette subfamily A1 (ABCA1) receptor on macrophages. Conclusion: Lipid transport proteins contribute to the pathogenesis of SAH, and low PON1 levels inversely correlate with the severity of alcoholic hepatitis and 28-day mortality. Restitution of circulating PON1 may be beneficial and needs therapeutic evaluation in patients with SAH.

5.
J Cell Physiol ; 233(11): 9015-9030, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923313

RESUMO

Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three-dimensional (3D) DP spheroids (DPS) with or without a silk-gelatin (SG) microenvironment, which showed enhanced DP-specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil-treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell-cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial-mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organoides/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Derme/citologia , Derme/crescimento & desenvolvimento , Transição Epitelial-Mesenquimal/genética , Feminino , Cabelo/citologia , Folículo Piloso/citologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Organoides/citologia , Regeneração/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...