Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944716

RESUMO

The carboxyl terminal domain of the largest subunit of eukaryotic RNA polymerase II (RNAPII) consists of highly conserved tandem repeats of Tyr1Ser2Pro3Thr4Ser5Pro6Ser7, referred as CTD. The CTD undergoes posttranslational modifications where the interplay of kinases imparts specific CTD phosphorylations, recognized by regulatory proteins that help in the mRNA transcription. Here, the Ser5 phosphorylation (Ser5P) remains high during the transcription initiation, followed by the Ser2P which peaks towards the termination and the Ser7P remains high throughout the transcription process. The Paf1 elongation complex (Paf1C) through its Cdc73 subunit is recruited to the phosphorylated CTD and play active role during different stages of mRNA transcription. We show that the CTD binding domain of Cdc73 is an independent folding unit which interacts with the hyper phosphorylated CTD. The 500 ns MD simulation studies further identified the binding interface and the pattern of CTD phosphorylation involved in the interaction with Cdc73. The possible key residues were mutated and the subsequent pull down analysis suggests that the phosphorylated Ser2, Ser5 and Ser7 of the tandem CTD heptads interact respectively with Arg310, Arg268 and Arg300 of Cdc73. Our finding provides new insight for Cdc73 function during mRNA transcription.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int J Biol Macromol ; 253(Pt 7): 127541, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858651

RESUMO

The catalytic subunit of RNA Polymerase II contains a highly conserved carboxy terminal domain (CTD) composed of multiple tandem heptad sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The non-proline residues in CTD undergo posttranslational modifications, with Ser5 phosphorylation (Ser5P) predominating at the start of the transcription cycle and Ser2P at the end, while other phosphorylation levels are high all throughout. The differentially phosphorylated CTD is recognized by regulatory proteins, helpful during mRNA transcription and export. One such protein Npl3 is composed of two RNA binding domains and a C-terminus RGG/SR domain. The Ser411 of Npl3 is reported to make direct contact with Ser2P of CTD for its recruitment and function, while the Npl3 lacking of C-terminal 25 amino acids (Npl3Δ389-414) showed no apparent defects in mRNA synthesis. Here, we report that the RNA binding domains of Npl3 are separate folding units and interact also with the CTD. The interaction between Npl3 and CTD appears to involve not just Ser2P, but also the Ser5P and Ser7P. The Arg126 of the first RNA binding domain interacts with Ser2P whereas the Arg235 of the second RNA binding domain interacts with either Ser7P or Ser5P of another heptad. The finding provides new insight of Npl3 function for mRNA transcription.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fosforilação , Proteínas de Saccharomyces cerevisiae/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Int Microbiol ; 23(2): 277-286, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31655918

RESUMO

Siderophores (Gk iron carriers) are low molecular weight secondary metabolites produced by bacteria, fungi, and plants that have strong binding affinity for iron. Owing to their iron-chelating ability, they are produced mainly when the organism faces iron scarcity. The present study empirically investigated the importance of applying hydroxamate siderophore extracted from Aspergillus nidulans to the cells of Bacillus subtilis for bioremediation of cadmium salt. This investigation deals with siderophore-mediated intracellular Cd accumulation by bacterial cells, growth estimation, biochemical assays like lipid peroxidation, total protein content, carbohydrate content, and iron content estimation. In silico docking and STRING analyses revealed specific interaction between Aspergillus siderophore and receptors present on B. subtilis. Estimation of intracellular Cd by atomic absorption spectroscopy showed more accumulation of Cd ions by B. subtilis in the presence of hydroxamate siderophore. This suggests a possibility of confiscating environmental Cd2+ by utilizing metal chelation property of siderophores and hence can lead to emerging bioremediation mechanisms for heavy metals. In silico studies support experimental investigation and suggest higher affinity of siderophore for Cd ions as compared with ferric ions.


Assuntos
Bacillus subtilis/metabolismo , Cádmio/metabolismo , Metais Pesados/metabolismo , Sideróforos , Aspergillus nidulans/metabolismo , Biodegradação Ambiental , Ferro/metabolismo , Simulação de Acoplamento Molecular , Sideróforos/biossíntese , Sideróforos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...