Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(8): 2162-2165, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058667

RESUMO

Due to their sub-millimeter spatial resolution, ink-based additive manufacturing tools are typically considered less attractive than nanophotonics. Among these tools, precision micro-dispensers with sub-nanoliter volumetric control offer the finest spatial resolution: down to 50 µm. Within a sub-second, a flawless, surface-tension-driven spherical shape of the dielectric dot is formed as a self-assembled µlens. When combined with dispersive nanophotonic structures defined on a silicon-on-insulator substrate, we show that the dispensed dielectric µlenses [numerical aperture (NA) = 0.36] engineer the angular field distribution of vertically coupled nanostructures. The µlenses improve the angular tolerance for the input and reduces the angular spread of the output beam in the far field. The micro-dispenser is fast, scalable, and back-end-of-line compatible, allowing geometric-offset-caused efficiency reductions and center wavelength drift to be easily fixed. The design concept is experimentally verified by comparing several exemplary grating couplers with and without a µlens on top. A difference of less than 1 dB between incident angles of 7° and 14° is observed in the index-matched µlens, while the reference grating coupler shows around 5 dB contrast.

2.
Heliyon ; 9(3): e14164, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967905

RESUMO

We investigated the feasibility of designing and fabricating novel broadband radiofrequency (RF) absorbers for use in cavity-backed antennas. Fabricating the absorber involved a multi-material additive manufacturing (AM) approach that combined two polymer filaments: a low-loss dielectric filament and a lossy carbon-loaded filament. An iterative optimization algorithm was developed to deploy these filaments and create gradient distributions of material properties that minimize reflectance over a desired frequency band and a range of incident angles to achieve wideband electromagnetic absorption. The chosen material profiles were effectively realized using a spatially varying subwavelength lattice structure printed via fused filament fabrication. Experimentally, validation results demonstrated low reflectance over a wide frequency band, 10 to 40 GHz, and a range of incident angles, 0°-50°. Finally, this printed multi-material absorber was integrated within a cavity-backed spiral antenna and used to suppress backlobe radiation while maintaining an acceptable radiation pattern in the forward direction. While this study investigated cavity-backed antennas, these computational and experimental methods are potentially useful for a wide range of other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...