Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Drug Deliv Transl Res ; 11(1): 118-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32016707

RESUMO

Amphotericin B (AmB) exhibits potential antileishmanial activity, with only a little rate of recurrence. However, low bioavailability and severe nephrotoxicity are among the major shortcomings of AmB-based therapy. Various AmB nanoformulations have been developed, which to an extent, have reduced its toxicity and increased the drug efficacy. To further reduce the nonspecific tissue distribution and the cost of the treatment, the current AmB-based formulations require additional improvements. Combination of natural bioenhancers with AmB is expected to further increase its bioavailability. Therefore, we developed a nanoformulation of AmB and piperine (Pip), a plant alkaloid, known to enhance the bioavailability of various drugs, by entrapping them in guar gum, a macrophage targeting polymer. Owing to the ease of oral delivery, these nanoparticles (NPs) were coated with eudragit to make them suitable for oral administration. The formulated eudragit-coated AmB and Pip-loaded NPs (Eu-HDGG-AmB-Pip-NPs) exhibited controlled release of the loaded therapeutic agents and protected the drug from acidic pH. These NPs exhibited effective suppression of growth of both promastigotes and amastigotes of Leishmania donovani parasite under in vitro. In vivo evaluation of these NPs for therapeutic efficacy in golden hamster-L. donovani model demonstrated enhanced drug bioavailability, non-nephrotoxic nature, and potential antileishmanial activity with up to 96% inhibition of the parasite. Graphical abstract.


Assuntos
Alcaloides , Leishmaniose Visceral , Nanopartículas , Anfotericina B/farmacologia , Animais , Benzodioxóis , Cricetinae , Portadores de Fármacos/uso terapêutico , Galactanos , Leishmaniose Visceral/tratamento farmacológico , Mananas , Piperidinas , Gomas Vegetais , Alcamidas Poli-Insaturadas
3.
Pharm Res ; 37(12): 253, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274394

RESUMO

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s11095-020-02971-0.

4.
Drug Deliv Transl Res ; 9(6): 1159-1188, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31440985

RESUMO

Galactomannan (GM), a natural polymer, is recognized to specifically target macrophage mannose receptors (CD206). Interestingly, some reports indicate that GM has an ability to induce pro-inflammatory (M1-like, tumericidal) polarization in macrophages, suggesting its potential use as an anti-cancer agent. Hydrazinocurcumin (HC), a pyrazole derivative of curcumin, is reported to possess increased anti-cancer efficacy over curcumin. Moreover, HC-encapsulated nanoparticles (NPs) have been reported to re-polarize tumor-associated macrophages (TAMs) from anti-inflammatory (M2-like, tumor-promoting) to pro-inflammatory phenotype. To club the therapeutic properties of both GM and HC, we synthesized self-assembled amphiphilic PEGylated GM NPs loaded with HC (PSGM-HCNPs) and evaluated their potential to re-polarize TAMs towards M1-like phenotype. PSGM-HCNPs re-polarized IL-4 polarized RAW 264.7 cells via a phenotypic switch from M2- to M1-like by elevating ROS level, decreasing CD206 and arginase-1 expressions and increasing pro-inflammatory cytokines' secretion. Conditioned medium (CM) taken from re-polarized RAW 264.7 cells containing residual PSGM-HCNPs elevated ROS, arrested cell cycle, and induced apoptosis in 4T1, breast cancer cells, and Ehrlich's ascites carcinoma (EAC) cells. Decreased levels of MMP-2, MMP-9, and Bcl-2 with increased levels of Bax in both 4T1 and EAC cells indicated anti-metastatic and apoptosis-inducing potential of the CM. Treatment of PSGM-HCNPs in EAC-bearing mice reduced tumor burden, increased their survival time, decreased CD206+F4/80+ cells, and increased TNF-α+F4/80+ cells signifying decrease in M2- and increase in M1-like skewness among ascitic TAMs.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Ehrlich/tratamento farmacológico , Curcumina/análogos & derivados , Hidrazinas/administração & dosagem , Macrófagos/efeitos dos fármacos , Mananas/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Ehrlich/imunologia , Carcinoma de Ehrlich/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Curcumina/administração & dosagem , Citocinas/imunologia , Sinergismo Farmacológico , Feminino , Galactose/análogos & derivados , Macrófagos/imunologia , Camundongos , Polietilenoglicóis/administração & dosagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-28607028

RESUMO

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Fluconazol/análogos & derivados , Fluconazol/farmacologia , Células A549 , Linhagem Celular , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fluconazol/efeitos adversos , Proteínas Fúngicas/metabolismo , Humanos , Lipase/metabolismo , Nanopartículas/química
7.
J Tissue Eng Regen Med ; 11(6): 1689-1700, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26177894

RESUMO

We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-ß1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Cartilagem , Técnicas de Cultura de Células/métodos , Condrócitos/metabolismo , Criogéis/química , Alicerces Teciduais/química , Animais , Cartilagem/lesões , Cartilagem/metabolismo , Cartilagem/patologia , Quitosana/química , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Feminino , Gelatina/química , Cabras , Coelhos , Sefarose/química
8.
ACS Appl Mater Interfaces ; 8(24): 15145-59, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27223844

RESUMO

In this study, the potential of cryogel bilayer wound dressing and skin regenerating graft for the treatment of surgically created full thickness wounds was evaluated. The top layer was composed of polyvinylpyrrolidone-iodine (PVP-I) cryogel and served as the antiseptic layer, while the bottom regenerative layer was made using gelatin cryogel. Both components of the bilayer showed typical features of a cryogel interconnected macropore network, rapid swelling, high water uptake capacity of about 90%. Both PVP and gelatin cryogel showed high tensile strength of 45 and 10 kPa, respectively. Gelatin cryogel sheets were essentially elastic and could be stretched without any visible deformation. The antiseptic PVP-I layer cryogel sheet showed sustained iodine release and suppressed microbial growth when tested with skin pathogens (zone of inhibition ∼2 cm for sheet of 0.9 cm diameter). The gelatin cryogel sheet degraded in vitro in weeks. The gelatin cryogel sheet supported cell infiltration, attachment, and proliferation of fibroblasts and keratinocytes. Microparticles loaded with bioactive molecules (mannose-6-phosphate and human fibrinogen) were also incorporated in the gelatin cryogel sheets for their role in enhancing skin regeneration and scar free wound healing. In vivo evaluation of healing capacity of the bilayer cryogel was checked in rabbits by creating full thickness wound defect (diameter 2 cm). Macroscopic and microscopic observation at regular time intervals for 4 weeks demonstrated better and faster skin regeneration in the wound treated with cryogel bilayer as compared to untreated defect and the repair was comparable to commercial skin regeneration scaffold Neuskin-F. Complete skin regeneration was observed after 4 weeks of implantation with no sign of inflammatory response. Defects implanted with cryogel having mannose-6-phosphate showed no scar formation, while the wound treated with bilayer incorporated with human fibrinogen microparticles showed early signs of skin regeneration; epidermis formation occurred at 2 weeks after implantation.


Assuntos
Criogéis/farmacologia , Transplante de Pele , Cicatrização/efeitos dos fármacos , Animais , Criogéis/química , Gelatina/química , Humanos , Coelhos , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/lesões
9.
Colloids Surf B Biointerfaces ; 140: 117-120, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26745638

RESUMO

The main aim of the current study is to compare the physicochemical properties, cytotoxicity and gene-transfer ability of electrostatically and covalently linked nanocomposites of polyethylenimine (PEI) and polyacrylic acid (PAA) on mammalian cells. Two series of nanocomposites, ionic PEI-PAA (iPP) and covalent PEI-PAA (cPP), were synthesized by varying the amounts of polyacrylic acid (PAA). Physicochemical characterization revealed that iPP nanopcomposites were of bigger sized than cPP nanocomposites with zeta potential almost comparable. Nucleic acid binding assay displayed that iPP and cPP nanocomposites, having sufficient cationic charge, efficiently interacted with plasmid DNA and completely retarded its electrophoretic mobility on agarose gel. In vitro MTT assay showed slightly higher cell viability of cPP/pDNA complexes over their ionic counterparts. Both the series of nanocomposite/pDNA complexes exhibited considerably higher transfection efficacy compared to pDNA complexes of native bPEI and the standard transfection reagent, Lipofectamine, with cPP/pDNA complexes performed much better than iPP/pDNA complexes. Flow cytometry further confirmed these findings where cPP-4/pDNA complex showed transfection in ∼ 85% HEK293 cells, while iPP-2/pDNA complex transfected ∼ 67% HEK293 cells. Lipofectamine/pDNA and bPEI/pDNA complexes could transfect just ∼ 35% and ∼ 26% HEK293 cells. All these results demonstrate the superiority of covalently linked nanocomposites (cPP) which could be used as efficient carriers for nucleic acids in future gene delivery applications.


Assuntos
Resinas Acrílicas/química , Nanocompostos/química , Plasmídeos/genética , Polietilenoimina/química , Animais , Células CHO , Sobrevivência Celular/genética , Cricetulus , DNA/química , DNA/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Plasmídeos/química , Espectrometria de Fluorescência , Transfecção/métodos
10.
Colloids Surf B Biointerfaces ; 135: 661-668, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26332300

RESUMO

UNLABELLED: Polyethylenimines (PEIs) are considered as the most promising vectors for non-viral gene delivery applications. Here, we report the synthesis and in vitro evaluation of two non-toxic and biodegradable polymers, TEPA@bPEI (TBP) and TEPA@lPEI (TLP), derived from low molecular weight branched and linear polyethylenimines by the stepwise reactions with methylacrylate (aza-Michael reaction) and amidation with tetraethylenepentamine (TEPA). These polymers not only showed their ability to bind and condense pDNA into nano-sized complexes but also provided protection against nucleases in cellular milieu. Both the polymers exhibited excellent buffering capacity and efficiently delivered nucleic acids (plasmid DNA and siRNA) across the mammalian cells (CHO and A549 cells) and outclassed native polymers and the commercial transfection reagents in terms of transfection efficiency and target gene silencing, and that too without compromising on biocompatibility i.e. TOXICITY: The results advocate the promising potential of the PEI derivatives as safe and potent nucleic acid carriers for practical gene delivery applications.


Assuntos
Materiais Biocompatíveis , DNA/genética , Polietilenoimina/química , RNA Interferente Pequeno/genética , Transfecção , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Microscopia Eletrônica de Transmissão
11.
Artigo em Inglês | MEDLINE | ID: mdl-25710353

RESUMO

In our previous report [Kumar, P.; Dhawan, G.; Chandra, R.; Gupta, K.C. Polyamine-assisted rapid and clean cleavage of oligonucleotides from cis-diol bearing universal support. Nucl. Acids Res. 2002, 30, e130 (1-8)], we demonstrated polyamine-mediated deprotection of oligonucleotides from cis-diol group bearing universal polymer support (I). However, vulnerability of the conventional dC(bz) to modifications under these conditions compelled us to employ dC(ac) during synthesis of oligonucleotide using conventional synthons. Here, a new set of simple and rapid deprotection conditions has been developed for the complete cleavage of oligonucleotides from the 1,4-anhydroerythritol-based universal polymer support employing conventional dC(bz) synthon. Using manganese-imidazole complex in aqueous ammonium hydroxide (∼ 30%), fully deprotected oligonucleotide sequences were obtained in 40 min, which were analyzed on reverse phase-HPLC and compared with the standard oligomers in terms of their retention time. Finally, their biological compatibility was established by analyzing PCR amplified products of npsA gene of N. meningitidis.


Assuntos
Eritritol/análogos & derivados , Oligonucleotídeos/síntese química , Polímeros/química , Hidróxido de Amônia , Cromatografia Líquida de Alta Pressão , Eritritol/química , Hidrólise , Oligonucleotídeos/química , Poliaminas/química
12.
Eur J Pharm Biopharm ; 91: 35-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619920

RESUMO

Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages.


Assuntos
Anticarcinógenos/administração & dosagem , Bromelaínas/administração & dosagem , Carcinogênese/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Nanopartículas/química , Proteínas de Plantas/administração & dosagem , Neoplasias Cutâneas/prevenção & controle , Administração Cutânea , Ananas/química , Animais , Anticarcinógenos/química , Anticarcinógenos/uso terapêutico , Bromelaínas/química , Bromelaínas/uso terapêutico , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Estabilidade Enzimática , Ácido Láctico/química , Masculino , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas de Plantas/química , Proteínas de Plantas/uso terapêutico , Caules de Planta/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Distribuição Aleatória , Pele/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos
13.
J Mater Chem B ; 3(44): 8659-8669, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262723

RESUMO

Liquid crystal (LC) microdroplets have been prepared for visual detection of HepG2 cells using 4-cyano-4'-pentyl biphenyl molecules in the presence of sodium dodecyl sulfate as a mediator and ß-galactose-conjugated poly(styrene-b-acrylic acid) block copolymer (PS-b-PA-G) as a modifier of LC-water interfaces. To clarify the effect of ß-galactose-containing ligands on the orientational transitions of LC microdroplets, maltotriose as a ligand simulant was conjugated to poly(styrene-b-acrylic acid) and used as a LC modifier. The interaction of HepG2 cells with the ß-galactose-conjugated block copolymer was effective in causing orientational transitions, from radial to bipolar, in LC microdroplets, whereas interactions of HepG2 cells with maltotriose-conjugated block copolymers were ineffective in inducing orientational transitions in LC microdroplets. To confirm the necessity of the PS segment of the block copolymer for transmitting the ligand-receptor interaction forces from the interface to the core of the LC microdroplets, ß-galactose-conjugated block copolymers (PS-b-PA-G) and homopolymers (PVLA) were synthesized and used to prepare LC microdroplets. The LC microdroplets containing a ß-galactose-conjugated homopolymer did not show orientational transitions upon contact with HepG2 cells. However, LC microdroplets containing a ß-galactose-conjugated block copolymer showed orientational transitions from radial to bipolar, indicating that the polystyrene segment in the amphiphilic block copolymer is essential for the effective transmission of ligand-receptor interactions to the core of LC microdroplets. ß-Galactose anchored LC microdroplets were able to detect 1.0 ± 0.1 HepG2 cells per µm2 of the test cell and had shown significantly high reproducibility (p < 0.05, n = 3). The configurational transition in LC microdroplets that was dependent on ligand-receptor interactions was used to develop a LC microdroplet-based biosensor for the detection of HepG2 cells in biological fluids.

14.
Langmuir ; 30(35): 10668-77, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25121826

RESUMO

A KB cancer cell-selective, liquid crystal microdroplets emulsion is prepared using folic acid-conjugated block copolymers (PS-b-PAA-FA) and sodium dodecyl sulfate (SDS) as a mediator to induce configurational transitions in 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal microdroplets emulsion. The prepared liquid crystal microdroplets emulsion has shown a configurational transition from radial to bipolar on interacting with KB cancer cells, but no transition from radial to bipolar configuration is observed when liquid crystal microdroplets emulsion was allowed to interact with other normal cells such as fibroblast and osteoblast. The KB cancer cell selectivity of liquid crystal microdroplets emulsion has been considered due to the presence of KB cancer cell folate receptor-specific ligand (FA) at the surface of liquid crystal microdroplets, which allowed liquid crystal microdroplets to interact specifically with KB cancer cells. The ligand-receptor interactions have been considered responsible for triggering the configurational transitions from radial to bipolar in liquid crystal microdroplets emulsion. Thus, folate ligand anchored liquid crystal microdroplets emulsion has shown a potential to be used for in vitro detection of KB cancer cells in the early stage of tumor development.


Assuntos
Ácido Fólico/química , Cristais Líquidos/química , Linhagem Celular , Emulsões/química , Humanos
15.
Tissue Eng Part A ; 20(23-24): 3101-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24846199

RESUMO

In this study, the potential of a chitosan-agarose-gelatin (CAG) cryogel scaffold for the repair of subchondral cartilage defects was explored in female New Zealand white rabbits. Custom-made CAG cryogel scaffold was implanted in a surgically created subchondral defect (diameter of 4 mm, depth of 4 mm) in knee joint of rabbit. The repair of the subchondral defect was evaluated at regular time interval by both macroscopic as well as microscopic examinations. The gross evaluation of the scaffold-implanted site showed integration of the scaffold with the surrounding tissue. Scanning electron microscopy and histological staining of the remnants of implanted cryogel scaffold showed infiltration of the host cells. The repair of the subchondral defect along with well-integrated regenerated cartilage was confirmed by the histology analysis of the joint. Results showed significant cartilage regeneration by the fourth week until eighth week after implantation. Immunohistochemical analysis confirmed that regenerated tissue is hyaline cartilage and absence of hypertrophy marker was reported. In addition, the CAG scaffolds did not elicit any adverse immunological rejection as shown by hematological analysis. Enzyme-linked immunosorbent assay did not show any statistically significant change in the concentration of tumor necrosis factor-α in the serum, and remained in a nontoxic range. Rabbits with a surgically created defect but no scaffold did not show any cartilage regeneration throughout the experiment of 8 weeks. These results demonstrate that CAG cryogel scaffolds promote repair of an osteochondral defect at a load-bearing site in rabbits.


Assuntos
Quitosana/química , Criogéis/química , Gelatina/química , Alicerces Teciduais/química , Animais , Cartilagem , Feminino , Microscopia Eletrônica de Varredura , Coelhos
16.
J Biomed Nanotechnol ; 10(12): 3558-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26000370

RESUMO

Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy.


Assuntos
Bromelaínas/administração & dosagem , Ácido Láctico/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Ácido Poliglicólico/química , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bromelaínas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Resultado do Tratamento
17.
Colloids Surf B Biointerfaces ; 115: 79-85, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333556

RESUMO

Recently, polyethylenimines (PEIs) have emerged as efficient vectors for nucleic acids delivery. However, inherent cytotoxicity has limited their in vivo applications. To address this concern as well as to incorporate hydrophobic domains for improving interactions with the lipid bilayers in the cell membranes, we have tethered varying amounts of amphiphilic pyridoxyl moieties onto bPEI to generate a small series of pyridoxyl-PEI (PyP) polymers. Spectroscopic characterization confirms the formation of PyP polymers, which subsequently form stable complexes with pDNA in nanometric range with positive surface charge. The projected modification not only accounts for a decrease in the density of 1° amines but also allows formation of relatively loose complexes with pDNA (cf. bPEI). Alleviation of the cytotoxicity, efficient interaction with cell membranes and easy disassembly of the pDNA complexes have led to the remarkable enhancement in the transfection efficiency of PyP/pDNA complexes in mammalian cells with one of the formulations, PyP-3/pDNA complex, showing transfection in ∼68% cells compared to ∼16% cells by Lipofectamine/pDNA complex. Further, the efficacy of PyP-3 vector has been established by delivering GFP-specific siRNA resulting in ∼88% suppression of the target gene expression. These results demonstrate the efficacy of the projected carriers that can be used in future gene therapy applications.


Assuntos
Aminas/química , Materiais Biocompatíveis/farmacologia , Técnicas de Transferência de Genes , Polietilenoimina/farmacologia , Soluções Tampão , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Hemólise/efeitos dos fármacos , Heparina/metabolismo , Humanos , Ligantes , Lipídeos/química , Células MCF-7 , Ensaios de Proteção de Nucleases , Tamanho da Partícula , Plasmídeos/metabolismo , Polietilenoimina/síntese química , Polietilenoimina/química , RNA Interferente Pequeno/metabolismo , Eletricidade Estática , Titulometria
18.
Sci Rep ; 3: 3408, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24296454

RESUMO

The efficiency of genetic transformation technology to generate stable transgenics depends upon the successful delivery of plasmid DNA in embryonic cells. The available gene vectors facilitate efficient plasmid DNA delivery to the cellular milieu but are exposed to nuclease degradation. Recent in vitro studies suggest encapsulation of plasmid DNA with nanomaterial(s) for better protection against nucleases. Therefore, in this study, we tested if complexing of free plasmid DNA with linear polyethylenimine (LPEI, 25 kDa) based nanoparticle (LPN) enhances the efficiency of transformation (transgenesis) by using Drosophila based germ-line transformation technology. Here, we show that the LPN-DNA complex not only enhances the efficiency of this transgenic technology at a DNA concentration of 0.04 µg/µl but also reduces the DNA quantity required to generate transgenics by ten folds. This approach has potential applications for other types of transgenesis and nucleic acid injection methods in Drosophila as well as other popular genetic model systems.


Assuntos
DNA/administração & dosagem , DNA/genética , Drosophila/genética , Transfecção/métodos , Animais , Animais Geneticamente Modificados/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Microinjeções/métodos , Nanopartículas/administração & dosagem , Nanoestruturas/administração & dosagem , Plasmídeos/genética , Polietilenoimina/administração & dosagem , Transgenes/genética
19.
Mol Biosyst ; 9(9): 2322-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23807263

RESUMO

A series of electrostatically crosslinked nanoparticles, N-(2-hydroxyethyl)-polyethylenimine-PEG600 (HePP), was prepared by allowing N-(2-hydroxyethyl)-polyethylenimine (HeP) to interact with polyethyleneglycol (600) dicarboxylic acid (HOOC-PEG600-COOH, PEG600dc), they were then evaluated for their capability to transfect cells in vitro and in vivo. DLS studies revealed the size of the HePP nanoparticles in the range 106-170 nm, which efficiently condensed nucleic acids and provided sufficient protection against nuclease degradation. HePP-pDNA complexes exhibited a considerably higher transfection efficiency and cell viability in various mammalian cell lines, with HePP-3-pDNA displaying the highest gene expression, which outperformed HeP and the commercially available transfection reagent, Lipofectamine™. Also, HePP-3 mediated sequential delivery of GFP specific siRNA resulted in ∼76% suppression of the target gene. Intravenous administration of HePP-3-pDNA complex to mice, followed by monitoring of the reporter gene analysis post 7d, revealed the highest gene expression occurred in the spleen. Together, these results advocate the potential of HePP nanoparticles as efficient vectors for gene delivery in vitro and in vivo.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Tamanho da Partícula
20.
Biomaterials ; 34(12): 3064-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357370

RESUMO

Doxorubicin (DOX) is a well-known anticancer drug used for the treatment of a wide variety of cancers. However, undesired toxicity of DOX limits its uses. To address the issue of minimizing toxicity of DOX by making it targeted towards cancer cells, DOX was entrapped in self-assembled 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid (HDHA) nanoparticles. We hypothesized that by encapsulating the drug in biodegradable nanoparticles, its therapeutic efficacy would improve, if targeted against cancer cells. We synthesized cell receptor targeted, DOX loaded HDHA nanoparticles (NPs) and non-targeted DOX loaded O-hexadecylated dextran (HDD) nanoparticles (NPs) and characterized them for their entrapment efficiency, percent yield, drug load, surface morphology, particle size and in vitro drug release. The anticancer efficacy of DOX loaded HDHA-NPs was evaluated by measuring the changes in tumor volumes, tumor weights, and mean survival rate of Swiss albino mice grafted with Ehrlich's ascites carcinoma (EAC) cells. For this, the animals were given HDHA-DOX-NPs (1.5 mg/kg b.wt.) intravenously and a green tea polyphenol, Epigallocatechin-3-gallate (EGCG) (20 mg/kg b.wt.), orally through gavage. The targeted NP dose with EGCG significantly increased mean survival time of the animals and enhanced the therapeutic efficacy of the drug compared to the non-targeted NPs and free DOX. Further, we showed that these NPs (HDD and HDHA) were more active in the presence of EGCG than DOX alone in inducing apoptosis in EAC cells as evident by an increase in sub-G1 cells (percent), Annexin V positive cells and chromatin condensation along with the reduction in mitochondrial membrane potential (MMP). The study demonstrates that DOX loaded HDHA-NPs along with EGCG significantly inhibit the growth of EAC cells with ∼38-fold dose advantage compared to DOX alone and thus opens a new dimension in cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Ehrlich/patologia , Catequina/análogos & derivados , Doxorrubicina/farmacologia , Nanopartículas , Chá/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Catequina/administração & dosagem , Doxorrubicina/administração & dosagem , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...