Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459355

RESUMO

XIST RNA is heavily studied for its role in fundamental epigenetics and X-chromosome inactivation; however, the translational potential of this singular RNA has been much less explored. This article combines elements of a review on XIST biology with our perspective on the translational prospects and challenges of XIST transgenics. We first briefly review aspects of XIST RNA basic biology that are key to its translational relevance, and then discuss recent efforts to develop translational utility of XIST for chromosome dosage disorders, particularly Down syndrome (DS). Remarkably, it was shown in vitro that expression of an XIST transgene inserted into one chromosome 21 can comprehensively silence that chromosome and "dosage compensate" Trisomy 21, the cause of DS. Here we summarize recent findings and discuss potential paths whereby ability to induce "trisomy silencing" can advance translational research for new therapeutic strategies. Despite its common nature, the underlying biology for various aspects of DS, including cell types and pathways impacted (and when), is poorly understood. Recent studies show that an inducible iPSC system to dosage-correct chromosome 21 can provide a powerful approach to unravel the cells and pathways directly impacted, and the developmental timing, information key to design pharmacotherapeutics. In addition, we discuss prospects of a more far-reaching and challenging possibility that XIST itself could be developed into a therapeutic agent, for targeted cellular "chromosome therapy". A few rare case studies of imbalanced X;autosome translocations indicate that natural XIST can rescue an otherwise lethal trisomy. The potential efficacy of XIST transgenes later in development faces substantial biological and technical challenges, although recent findings are encouraging, and technology is rapidly evolving. Hence, it is compelling to consider the transformative possibility that XIST-mediated chromosome therapy may ultimately be developed, for specific pathologies seen in DS, or other duplication disorders.

2.
Dev Cell ; 57(8): 1053-1067.e5, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421372

RESUMO

Organ formation requires integrating signals to coordinate proliferation, specify cell fates, and shape tissue. Tracing these events and signals remains a challenge, as intermediate states across many critical transitions are unresolvable over real time and space. Here, we designed a unique computational approach to decompose a non-linear differentiation process into key components to resolve the signals and cell behaviors that drive a rapid transition, using the hair follicle dermal condensate as a model. Combining scRNA sequencing with genetic perturbation, we reveal that proliferative Dkk1+ progenitors transiently amplify to become quiescent dermal condensate cells by the mere spatiotemporal patterning of Wnt/ß-catenin and SHH signaling gradients. Together, they deterministically coordinate a rapid transition from proliferation to quiescence, cell fate specification, and morphogenesis. Moreover, genetically repatterning these gradients reproduces these events autonomously in "slow motion" across more intermediates that resolve the process. This analysis unravels two morphogen gradients that intersect to coordinate events of organogenesis.


Assuntos
Transdução de Sinais , Pele , Diferenciação Celular , Folículo Piloso , Proteínas Hedgehog/genética , Morfogênese , Transdução de Sinais/genética
3.
Dev Cell ; 48(1): 17-31.e6, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595533

RESUMO

Delineating molecular and cellular events that precede appendage morphogenesis has been challenging due to the inability to distinguish quantitative molecular differences between cells that lack histological distinction. The hair follicle (HF) dermal condensate (DC) is a cluster of cells critical for HF development and regeneration. Events that presage emergence of this distinctive population are poorly understood. Using unbiased single-cell RNA sequencing and in vivo methods, we infer a sequence of transcriptional states through which DC cells pass that begins prior to HF morphogenesis. Our data indicate that Wnt/ß-catenin signaling is required to progress into an intermediate stage that precedes quiescence and differentiation. Further, we provide evidence that quiescent DC cells are recent progeny of selectively proliferating cells present prior to morphogenesis and that are later identified in the peri-DC zone during DC expansion. Together, these findings provide an inferred path of molecular states that lead to DC cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Folículo Piloso/citologia , Morfogênese/fisiologia , Análise de Célula Única , Derme/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurogênese , Pele/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
4.
Antibiotics (Basel) ; 6(4)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186026

RESUMO

Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...