Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 375: 114741, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395216

RESUMO

Nuclear factor erythroid 2 like (Nfe2l) gene family members 1-3 mediate cellular response to oxidative stress, including in the central nervous system (CNS). However, neuronal functions of Nfe2l3 are unknown. Here, we comparatively evaluated expression of Nfe2l1, Nfe2l2, and Nfe2l3 in singe cell RNA-seq (scRNA-seq)-profiled cortical and retinal ganglion cell (RGC) CNS projection neurons, investigated whether Nfe2l3 regulates neuroprotection and axon regeneration after CNS injury in vivo, and characterized a gene network associated with Nfe2l3 in neurons. We showed that, Nfe2l3 expression transiently peaks in developing immature cortical and RGC projection neurons, but is nearly abolished in adult neurons and is not upregulated after injury. Furthermore, within the retina, Nfe2l3 is enriched in RGCs, primarily neonatally, and not upregulated in injured RGCs, whereas Nfe2l1 and Nfe2l2 are expressed robustly in other retinal cell types as well and are upregulated in injured RGCs. We also found that, expressing Nfe2l3 in injured RGCs through localized intralocular viral vector delivery promotes neuroprotection and long-distance axon regeneration after optic nerve injury in vivo. Moreover, Nfe2l3 provided a similar extent of neuroprotection and axon regeneration as viral vector-targeting of Pten and Klf9, which are prominent regulators of neuroprotection and long-distance axon regeneration. Finally, we bioinformatically characterized a gene network associated with Nfe2l3 in neurons, which predicted the association of Nfe2l3 with established mechanisms of neuroprotection and axon regeneration. Thus, Nfe2l3 is a novel neuroprotection and axon regeneration-promoting factor with a therapeutic potential for treating CNS injury and disease.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Humanos , Axônios/fisiologia , Neuroproteção , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/metabolismo , Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo
2.
Brain Res ; 1809: 148368, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059258

RESUMO

Collapsin response mediator proteins (Crmps) play roles in neuronal development and axon growth. However, neuronal-specific roles of Crmp1, Crmp4, and Crmp5 in regeneration of injured central nervous system (CNS) axons in vivo are unclear. Here, we analyzed developmental and subtype-specific expression of Crmp genes in retinal ganglion cells (RGCs), tested whether overexpressing Crmp1, Crmp4, or Crmp5 in RGCs through localized intralocular AAV2 delivery promotes axon regeneration after optic nerve injury in vivo, and characterized developmental co-regulation of gene-concept networks associated with Crmps. We found that all Crmp genes are developmentally downregulated in RGCs during maturation. However, while Crmp1, Crmp2, and Crmp4 were expressed to a varying degree in most RGC subtypes, Crmp3 and Crmp5 were expressed only in a small subset of RGC subtypes. We then found that after optic nerve injury, Crmp1, Crmp4, and Crmp5 promote RGC axon regeneration to varying extents, with Crmp4 promoting the most axon regeneration and also localizing to axons. We also found that Crmp1 and Crmp4, but not Crmp5, promote RGC survival. Finally, we found that Crmp1, Crmp2, Crmp4, and Crmp5's ability to promote axon regeneration is associated with neurodevelopmental mechanisms, which control RGC's intrinsic axon growth capacity.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Axônios/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Regeneração Nervosa/fisiologia , Expressão Gênica , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...