Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Small ; : e2402006, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898725

RESUMO

Doping is considered a promising material engineering strategy in electrochemical nitrogen reduction reaction (NRR), provided the role of the active site is rightly identified. This work concerns the doping of group VIB metal in Ag3PO4 to enhance the active site density, accompanied by d-p orbital mixing at the active site/N2 interface. Doping induces compressive strain in the Ag3PO4 lattice and inherently accompanies vacancy generation, the latter is quantified with positron annihilation lifetime studies (PALS). This eventually alters the metal d-electronic states relative to Fermi level and manipulate the active sites for NRR resulting into side-on N2 adsorption at the interface. The charge density deployment reveals Mo as the most efficient dopant, attaining a minimum NRR overpotential, as confirmed by the detailed kinetic study with the rotating ring disk electrode (RRDE) technique. In fact, the Pt ring of RRDE fails to detect N2H4, which is formed as a stable intermediate on the electrode surface, as identified from in-situ attenuated total reflectance-infrared (ATR-IR) spectroscopy. This advocates the complete conversion of N2 to NH3 on Mo/Ag3PO4-10 and the so-formed oxygen vacancies formed during doping act as proton scavengers suppressing hydrogen evolution reaction resulting into a Faradaic efficiency of 54.8% for NRR.

2.
Phys Chem Chem Phys ; 26(24): 17324-17333, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860439

RESUMO

This study aims to understand and correlate the role of the nature and relative concentration of oxygen vacancies with the trend observed in the OER with the Bi-Fe-O system. To understand this, we first investigated the system of oxides using X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR), which revealed the presence of oxygen vacancies in the system. Density functional theory (DFT) was employed to investigate the relative concentration of these vacancies by calculating their formation energies. Positron annihilation lifetime spectroscopy (PALS) was carried out to understand the nature of these oxygen vacancies. We observed that the presence of a higher concentration of monovacancies created due to the absence of oxygen from the structure of Bi2Fe4O9 was mainly responsible for the high performance of the oxide towards the OER compared to that of the other oxides viz-BiFeO3 and Bi25FeO40 of the Bi-Fe-O system.

3.
RSC Adv ; 14(25): 17801-17813, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38832250

RESUMO

Aliovalent doping in ceria and defect engineering are important aspects in tuning the properties of ceria for advanced technological applications, especially in the emerging field of electrocatalytic water-splitting for harvesting renewable energy. However, the ambiguity regarding the choice of dopants/co-dopants and ways to deal with the size difference between dopants and lattice hosts remains a long-standing problem. In this study, ceria was aliovalently codoped with Sc3+ and La3+ while keeping the total concentration of dopants constant; the ionic radius of the former is smaller and that of the latter is larger than Ce4+. Variations in the relative amounts of these dopants helped to modulate the effective ionic radii and match that of the host. A systematic study on the role of these aliovalent dopants in defect evolution in ceria and in modulating the Ce3+ fraction using powder XRD, Rietveld refinement, positron annihilation lifetime spectroscopy, X-ray photoelectron spectroscopy, Eu3+ photoluminescence, and Raman spectroscopy is presented here. The evolved defects and their dependence on subtle factors other than charge compensation are further correlated with their electrocatalytic activity towards oxygen evolution reaction (OER) in alkaline medium. The catalyst with an optimum defect density, maximum Ce3+ fraction at the surface and the least effective ionic radius difference between the dopants and the host demonstrated the best performance towards the OER. This study demonstrates how effective ionic radius modulation in defect-engineered ceria through a judicious choice of codopants can enhance the catalytic property of ceria and provides immensely helpful information for designing ceria-based heterogeneous catalysts with desired functionalities.

4.
Plant Physiol Biochem ; 211: 108601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696867

RESUMO

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.


Assuntos
Neurotransmissores , Fenômenos Fisiológicos Vegetais , Estresse Salino , Transdução de Sinais , Neurotransmissores/metabolismo , Plantas/metabolismo , Tolerância ao Sal
5.
Phys Chem Chem Phys ; 26(11): 8641-8650, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436395

RESUMO

Lanthanide-doped luminescent nanoparticles are an appealing system for many applications in the area of biomedical, solar cell, thermometry, anti-counterfeiting, etc. due to their sensitivity, reliability, high photochemical stability, and high optical transparency in the visible-NIR range. A color-tunable upconversion-luminescence (UCL) in a new low phonon energy ThO2 host based on modulating sensitizer concentration has been realized in this work and it may work as a potential candidate to replace corrosive and toxic fluoride based hosts in the future. Er3+-Yb3+ co-doped thoria nanoparticles were prepared using a gel combustion route and their structural and luminescence properties were determined as a function of the Yb3+ concentration. Phonon dispersion measurements have established the dynamic structural stability of the thoria nanoparticles. Density functional theory (DFT) was used to calculate the defect formation energy, highlighting the feasibility of dual ion (Er3+ and Yb3+) doping in thoria. The morphology and average size of the doped thoria was studied using high resolution transmission electron microscopy (HRTEM), and any defects evolving as a result of aliovalent doping were probed using positron annihilation lifetime spectroscopy (PALS). With 980 nm laser excitation, the nanothoria emits green and near-red light. A significant enhancement of the red-to-green intensity ratio of Er3+ ions in nanothoria was observed with an increase in Yb3+ concentration which resulted in beautiful color tunability from green to yellow light in going from lower (up to ∼5 mol%) to higher (10 and 15 mol%) Yb3+ concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two-photon upconversion processes for the green and red emissions.

6.
ACS Appl Bio Mater ; 7(4): 2354-2366, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38481091

RESUMO

This work reports an "all-in-one" theranostic upconversion luminescence (UCL) system having potential for both diagnostic and therapeutic applications. Despite considerable efforts in designing upconversion nanoparticles (UCNPs) for multimodal imaging and tumor therapy, there are few reports investigating dual modality SPECT/optical imaging for theranostics. Especially, research focusing on in vivo biodistribution studies of intrinsically radiolabeled UCNPs after intravenous injection is of utmost importance for the potential clinical translation of such formulations. Here, we utilized the gamma emission from 169Er and 171Er radionuclides for the demonstration of radiolabeled ZnAl2O4:171/169Er3+ as a potent agent for dual-modality SPECT/optical imaging. No uptake of radio nanoformulation was detected in the skeleton after 4 h of administration, which evidenced the robust integrity of ZnAl2O4:169/171Er3+. Combining the therapeutics using the emission of ß- particulates from 169Er and 171Er will be promising for the radio-theranostic application of the synthesized ZnAl2O4:169/171Er3+ nanoformulation. Cell toxicity studies of ZnAl2O4:1%Er3+ nanoparticles were examined by an MTT assay in B16F10 mouse melanoma cell lines, which demonstrated good biocompatibility. In addition, we explored the mechanism of UCL modulation via defect engineering by Bi3+ codoping in the ZnAl2O4:Er3+ upconversion nanophosphor. The UCL color tuning was successfully achieved from the red to the green region as a function of Bi3+ codoping concentrations. Further, we tried to establish a correlation of UCL tuning with the intrinsic oxygen and cation vacancy defects as a function of Bi3+ codoping concentrations with the help of electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) studies. This study contributes to building a bridge between nature of defects and UC luminescence that is crucial for the design of advanced UCNPs for theranostics.


Assuntos
Luminescência , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
7.
Chem Commun (Camb) ; 60(21): 2922-2925, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372127

RESUMO

π-Conjugated pyrene-thiophene-based room-temperature discotic liquid crystals armed with four peripheral aliphatic chains are reported to study their potential use in a hole-transporting organic semiconductor. The charge carrier mobility studies using the ToF method revealed room temperature hole mobility in the order of 10-4 cm2 V-1 s-1 for both mesogens. However, the mobility values for compound 1a were observed in the order of 10-3 cm2 V-1 s-1 at high temperatures. Such molecular systems can potentially be used in nonlinear organic electronic applications.

8.
J Circ Biomark ; 13: 1-6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415240

RESUMO

Background: For patients with mCRPC, PSMA-targeted radioligand treatment has significantly improved the clinical outcome. A blood-based liquid biopsy assay for recognizing PSMA protein expression on circulating tumor cells may be beneficial for better informing therapeutic decision-making and identifying the patients most likely to benefit from PSMA-targeted radioligand therapy. Methods: Using high-throughput imaging and digital AI pathology algorithms, a four-color immunofluorescence assay has been developed to find PSMA protein expression on CTCs on a glass slide. Cell line cells (LNCaP/PC3s/22Rv1) spiked into healthy donor blood were used to study the precision, specificity, sensitivity, limit of detection, and overall accuracy of the assay. Clinical validation and low-pass whole-genome sequencing were performed in PSMA-PET-positive patients with high-risk mCRPC (N = 24) utilizing 3 mL of blood. Results: The PSMA CTC IF assay achieved analytical specificity, sensitivity, and overall accuracy above 99% with high precision. In the clinical validation, 76% (16/21) of the cases were PSMA positive with CTC heterogeneity, and 88% (21/24) of the patients contained at least one conventional CTC per milliliter of blood. Thirty-six low-pass-sequenced CTCs from 11 individuals with mCRPC frequently exhibited copy number increases in AR and MYC and losses in RB1, PTEN, TP53, and BRCA2 locus. Conclusions: The analytical validation utilizing Epic Sciences' liquid biopsy CTC platform demonstrated the potential to detect PSMA protein expression in CTCs from patients with mCRPC. This assay is positioned as an effective research tool to evaluate PSMA expression, heterogeneity, and therapeutic response in many ongoing clinical studies to target tumors that express PSMA.

9.
Phys Chem Chem Phys ; 26(9): 7424-7434, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351884

RESUMO

The sensitive detection of toxic flammable volatile organics using low cost efficient sensors is important for ensuring both indoor and outdoor safety. It is essential for chemical sensors to exhibit a significantly stronger response to target analytes compared to equivalent amounts of analogous competing chemicals. In line with this importance, current work evaluated the performance of Zn2SnO4, a n-type semiconducting metal oxide, for sensing n-butanol in comparison to methanol, ethanol, and propanol vapours. These vapours fall within the category of aliphatic alcohols but vary in characteristics such as molecular weight, vapour pressure, volatility, and diffusivity. In this work we have explored the sensor's performance by adjusting the operating temperature over the range of 225-300 °C while detecting 1000 ppm of each of these vapours. Efforts were made to establish a correlation between the sensor's responses with the interactions of these vapours on the sensor's surface. Prior to assessing the sensing characteristics of the solid-state-route-derived Zn2SnO4, its structural characteristics, including phase purity, crystalline structure, bonding patterns, morphology, and defect characteristics, were studied. This comprehensive analysis sheds light on the potential of Zn2SnO4 as an effective sensor for detecting n-butanol.

10.
Small ; 20(23): e2308983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332439

RESUMO

Discotic liquid crystals (DLCs) are widely acknowledged as a class of organic semiconductors that can harmonize charge carrier mobility and device processability through supramolecular self-assembly. In spite of circumventing such a major challenge in fabricating low-cost charge transport layers, DLC-based hole transport layers (HTLs) have remained elusive in modern organo-electronics. In this work, a minimalistic design strategy is envisioned to effectuate a cyanovinylene-integrated pyrene-based discotic liquid crystal (PY-DLC) with a room-temperature columnar hexagonal mesophase and narrow bandgap for efficient semiconducting behavior. Adequately combined photophysical, electrochemical, and theoretical studies investigate the structure-property relations, logically correlating them with efficient hole transport. With a low reorganization energy of 0.2 eV, PY-DLC exhibits superior charge extraction ability from the contact electrodes at low values of applied voltage, achieving an electrical conductivity of 3.22 × 10-4 S m-1, the highest reported value for any pristine DLC film in a vertical charge transport device. The columnar self-assembly, in conjunction with solution-processable self-healed films, results in commendably elevated values of hole mobility (≈10-3 cm2 V-1s-1). This study provides an unprecedented constructive outlook toward the development of DLC semiconductors as practical HTLs in organic electronics.

11.
Chemphyschem ; 25(14): e202300730, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411619

RESUMO

Prolonged exposure to alcohol vapors can have detrimental effects on human health, potentially leading to eye irritation, dizziness, and in some cases, damage to the nervous system. The present article aims to provide a comprehensive understanding on the synthesis and characterization of zinc ferrite (ZnFe2O4) nanoparticles, as well as their interactions with a range of alcohol vapors, including methanol, ethanol, n-propanol, and isopropanol. These alcohols differ in their molecular weight, boiling points, diffusivity, and other properties. The study reveals the semiconducting ZnFe2O4 nanoparticulate sensor's capability for reversible, repeatable, and sensitive detection of alcohol vapors. The sensor exhibits the highest response to ethanol within operating temperature range (225-300 °C). An attempt is made to establish a correlation between the properties of the target analytes and the observed sensing signals. Additionally, the response conductance transients of ZnFe2O4 under the exposure to the studied alcohol vapors are modeled based on the Langmuir-Hinshelwood adsorption mechanism. The characteristic time constants obtained from this modeling are justified with respect to the properties of the analytes.

12.
Phys Chem Chem Phys ; 26(3): 1749-1761, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165712

RESUMO

Based on chemical intuition, linear trends are anticipated in Eu3+ photoluminescence performance inside a pyrochlore matrix of the chemical twins, Hf and Zr, owing to probable geometrical and chemical similarity around the luminescent center. The present work reports the drastically fluctuating result of doping Eu3+ in nanocrystalline pyrochlore, La2Hf2-xZrxO7 (LHZO), matrix on composition variation; the variation is counter to the anticipation-based chemical brotherhood of Hf and Zr. Zirconium-enriched samples of LHZO improve asymmetry around Eu3+ ion leading to enhanced photoluminescence quantum yield (PLQY). The samples with compositions 0.7Hf and 1.3Zr depict the lowest non-radiative channels with the highest theoretically calculated PLQY of ∼71% and excellent thermal stability (∼91%). Synergistic experimental and theoretical analysis reveals that Eu does not unbiasedly occupy La-sites in the pyrochlore LHZO matrix towards chemical twins of Hf and Zr; rather, it energetically prefers to occupy Zr-rich vicinal sites. When the composition with Zr is in the low-medium range, Eu has a higher probability of occupying Zr-rich vicinal sites depicting higher lifetime and PLQY. When Zr-content goes beyond 70-80%, the other site occupancies start contributing leading to a reduction in both lifetime and quantum yield. This work paves a great strategy and provides a futuristic potential to utilize europium luminescence in separating chemically close Hf-Zr for various technological applications.

13.
Eur J Nucl Med Mol Imaging ; 51(6): 1558-1573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270686

RESUMO

PURPOSE: Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS: 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS: The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS: These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.


Assuntos
Braquiterapia , Itérbio , Animais , Braquiterapia/métodos , Camundongos , Itérbio/química , Distribuição Tecidual , Nanopartículas/química , Marcação por Isótopo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Camundongos Endogâmicos C57BL , Goma Arábica/química , Feminino , Glicoproteínas/química , Linhagem Celular Tumoral , Radioisótopos/química , Radioisótopos/uso terapêutico
14.
J Nucl Med ; 65(1): 125-131, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37884334

RESUMO

Implementation of radiopharmaceutical therapy dosimetry varies depending on the clinical application, dosimetry protocol, software, and ultimately the operator. Assessing clinical dosimetry accuracy and precision is therefore a challenging task. This work emphasizes some pitfalls encountered during a structured analysis, performed on a single-patient dataset consisting of SPECT/CT images by various participants using a standard protocol and clinically approved commercial software. Methods: The clinical dataset consisted of the dosimetric study of a patient administered with [177Lu]Lu-DOTATATE at Tygerberg Hospital, South Africa, as a part of International Atomic Energy Agency-coordinated research project E23005. SPECT/CT images were acquired at 5 time points postinjection. Patient and calibration images were reconstructed on a workstation, and a calibration factor of 122.6 Bq/count was derived independently and provided to the participants. A standard dosimetric protocol was defined, and PLANETDose (version 3.1.1) software was installed at 9 centers to perform the dosimetry of 3 treatment cycles. The protocol included rigid image registration, segmentation (semimanual for organs, activity threshold for tumors), and dose voxel kernel convolution of activity followed by absorbed dose (AD) rate integration to obtain the ADs. Iterations of the protocol were performed by participants individually and within collective training, the results of which were analyzed for dosimetric variability, as well as for quality assurance and error analysis. Intermediary checkpoints were developed to understand possible sources of variation and to differentiate user error from legitimate user variability. Results: Initial dosimetric results for organs (liver and kidneys) and lesions showed considerable interoperator variability. Not only was the generation of intermediate checkpoints such as total counts, volumes, and activity required, but also activity-to-count ratio, activity concentration, and AD rate-to-activity concentration ratio to determine the source of variability. Conclusion: When the same patient dataset was analyzed using the same dosimetry procedure and software, significant disparities were observed in the results despite multiple sessions of training and feedback. Variations due to human error could be minimized or avoided by performing intensive training sessions, establishing intermediate checkpoints, conducting sanity checks, and cross-validating results across physicists or with standardized datasets. This finding promotes the development of quality assurance in clinical dosimetry.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Radiometria/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Fígado
15.
Chem Asian J ; 19(2): e202300936, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988364

RESUMO

Hydrogen (H)-bonding is crucial in constructing superstructures in chemical (such as chiral discotic liquid crystals (DLCs)) as well as in biological systems due to its specific and directional nature. In this context, we achieved the successful synthesis of two branches of heptazine-based H-bonded complexes using distinct strategies. Hpz*-Es-Cn , we incorporated chiral alkyl tails (Hpz-chiral) onto the central C3 symmetric heptazine core, connected to achiral benzoic acid derivatives (Es-Cn acid) through H-bonding. In Hpz-Es-Cn -acid*, we used an achiral heptazine derivative (Hpz-Es-Cn ) linked to a chiral acid via H-bonding. On the other hand, based on the DSC results, we observed that Hpz*-Es-Cn complexes exhibited three distinct phases, whereas Hpz-Es-Cn -acid* complexes displayed only a single mesophase. In polarized optical microscopy (POM) observations, all the complexes displayed birefringence at room temperature, with the color of the POM images changing as the temperature varied. X-ray diffraction (XRD) studies at lower temperatures confirmed that Hpz*-Es-C8 exhibited the columnar rectangular (Colr ) phase, while Hpz*-Es-C10/12 exhibited the columnar oblique (Colob ) phase. However, all the H-bonded complexes exhibited the columnar hexagonal (Colh ) phase at higher temperatures. The chiroptical spectra recorded by Circular dichroism (CD) highlight the specific observations in the columnar phase of two complexes, Hpz*-Es-C10 and Hpz*-Es-C12 . This behavior has potential applications in various fields, including sensors, displays, and responsive materials.

16.
Chem Asian J ; 19(2): e202300841, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100152

RESUMO

Detection of gas molecules and volatile organic compounds (VOCs) using efficient, low cost sensors has fetched significant attention in environmental monitoring, safety measures and medical diagnosis. In the present work, nickel ferrite (NFO) nanoparticles are explored as p-type semiconducting metal oxide (SMO) sensor for detection of five different organic vapors namely methanol, ethanol, n-propanol, iso-propanol and acetone which often cause severe damage to human body under prolonged exposure. The sensing studies in presence of the aforementioned five vapors are carried out by varying the sensor operating temperature (225-300 °C) and vapor concentrations (10-1000 ppm). Developed NFO sensor demonstrated best performance in terms of sensing (~10 ppm), response time (<10 s), excellent repeatability and selectivity towards ethanol among all other considered gas species. The repeatability of the sensor response is verified and the underlying reasons for the variation in the response of NFO sensor due to the change of operating temperature, analyte type and concentrations has been discussed. The synthesis of NFO through auto combustion method and study on their formation behaviour, oxygen vacancy evolution, band gap calculation, crystalline nature as well as microstructural features provides here the comprehensive information about the potential application of NFO nanoparticles as gas sensor.

17.
Dalton Trans ; 52(46): 17349-17359, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37937949

RESUMO

Deep eutectic solvents (DES) are considered a novel class of environmentally benign molecular solvents that are considered as potential solvents for nuclear fuel reprocessing, material recycling, and many other technological applications in both research and industry. However, there is a complete dearth of understanding pertaining to the behavior of metal ions in DES. Herein, we have investigated the speciation, complexation behavior, photochemistry, and redox properties and tried to obtain insight into the chemical aspects of the europium ion in DES (synthesized from heptyltriphenylphosphonium bromide and decanoic acid). The same has been probed using time-resolved photoluminescence (TRPL), cyclic voltammetry (CV), synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations. TRPL indicated the stabilization of europium in the +3 oxidation state, favoring the potential of the Eu(III)-DES complex to emit red light under near UV excitation and the existence of inefficient energy transfer between DES and Eu3+. EXAFS analysis revealed the presence of Eu-O and Eu-Br, which represent the local surroundings of Eu3+ in the Eu(III)-DES complex. TRPL measurement has also suggested two distinct local environments of europium ions in the complex. DFT calculations supported the EXAFS findings, confirming that the Eu(III)-DES structure involves not only the oxygen atom of decanoic acid but also the oxygen atoms from the nitrate ions, contributing to the local coordination of Eu(III). Electrochemical studies demonstrated that the redox reaction of Eu(III)/Eu(II) in DES displays quasi-reversible behavior. The reaction rate was observed to increase with higher temperatures. The findings of this study can contribute to the understanding of the fundamental properties and potential applications of this luminescent and electrochemically active complex and pave the way for further studies and the development of novel materials with enhanced luminescent and electrochemical properties.

18.
Inorg Chem ; 62(49): 20258-20270, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033302

RESUMO

Herein, we report the uranyl sensitization of Sm3+ emissions in uranium-codoped Li2B4O7:Sm3+ phosphor. The uranyl speciation in codoped [Sm, U] LTB samples was determined by synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy that revealed two coordination shells for U(VI) ions with bond distances of U-Oax (∼1.81 Å) and U-Oeq (∼2.30 Å). EXAFS fitting suggested that the uranyl moiety is present as pentagonal bipyramids (UO7) and hexagonal bipyramids (UO8) with five and six equatorial oxygen ligands, respectively. The alteration of the local structure of Sm3+ from [SmO4] to [SmO7] polyhedra and the changes in the coordination number of equatorial oxygen for uranyl were observed with different codoping concentrations of Sm3+ and uranium. Density functional theory (DFT) calculations suggested the lowering of defect formation energy for Li vacancies on codoping of Sm and U. Hence, we proposed the increase of the equatorial coordination number of UO22+ on the increase in the lithium vacancies in LTB. In addition, DFT supported the feasibility of efficient energy transfer (ET) due to the overlap of uranium and Sm3+ excited state levels. The influence of the same on the spectral features and UO22+ → Sm3+ energy transfer was investigated by time-resolved photoluminescence (PL) studies. The ET efficiency from the UO22+ to Sm3+ was 70.5% in 0.5 mol % codoped [Sm, U] LTB samples. The correlation of EXAFS and luminescence properties indicated a red shift in vibronic features of uranyl emission with increase in the equatorial coordination of the uranyl moiety from five to six. Additionally, a higher probability of ET was observed for uranyl speciation as UO8 hexagonal bipyramids. Temperature-dependent emissions and decay profiles were collected under uranyl excitation to investigate the thermal dependence of ET. A high energy barrier (Ea ∼ 4027 cm-1) was evaluated for the thermal quenching of Sm3+ emissions. This work provides insights into the modulation of luminescence and ET efficiency via structural changes in uranyl and Sm local environment in LTB phosphor.

19.
Front Bioeng Biotechnol ; 11: 1221159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026872

RESUMO

Whole-organ re-engineering is the most challenging goal yet to be achieved in tissue engineering and regenerative medicine. One essential factor in any transplantable and functional tissue engineering is fabricating a perfusable vascular network with macro- and micro-sized blood vessels. Whole-organ development has become more practical with the use of the decellularized organ biomatrix (DOB) as it provides a native biochemical and structural framework for a particular organ. However, reconstructing vasculature and re-endothelialization in the DOB is a highly challenging task and has not been achieved for constructing a clinically transplantable vascularized organ with an efficient perfusable capability. Here, we critically and articulately emphasized factors that have been studied for the vascular reconstruction in the DOB. Furthermore, we highlighted the factors used for vasculature development studies in general and their application in whole-organ vascular reconstruction. We also analyzed in detail the strategies explored so far for vascular reconstruction and angiogenesis in the DOB for functional and perfusable vasculature development. Finally, we discussed some of the crucial factors that have been largely ignored in the vascular reconstruction of the DOB and the future directions that should be addressed systematically.

20.
RSC Adv ; 13(44): 31101-31111, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37881761

RESUMO

Spinel materials have demonstrated diverse applications in various fields, especially in the energy sector. Since the pure spinel structure has the limitations of poor inherent activity and low conductivity, defect engineering through octahedral B-site modulation is expected to enhance various properties. Here in this work, we have synthesized ZnGa2-xAlxO4 (x = 0 ≤ 2) spinel and moved from one terminal (ZnGa2O4) to the other (ZnAl2O4) by varying the Ga/Al ratio using solvent-free solid-state reaction. Dopant and rare earth element-free (RE) ZnGa2O4 spinel showed excellent blue luminescence with photoluminescent quantum yields (PLQY) of 13% while exhibiting persistent light emission close to 60 min. The Al3+ incorporation at Ga3+ site doesn't yield any improvement in persistent luminescence lifetime owing to quenching of shallow traps as suggested by thermoluminescence (TL) studies. Moreover our materials have demonstrated bifunctional electrocatalytic activity towards both oxygen evolution (OER) and hydrogen evolution reaction (HER) which has never been reported for ZnGa2-xAlxO4. X-ray photoelectron spectroscopy (XPS) and positron annihilation lifetime spectroscopy (PALS) suggested that mixed Al/Ga-containing spinels possessed enhanced oxygen vacancies/defects. This makes them better electrocatalyst towards OER and HER compare to ZnGa2O4 and ZnAl2O4. The ZnGa1.75Al0.25O4 composition by virtue of enhanced oxygen vacancies and less charge transfer resistance (47.3 ohms) demonstrated best electrocatalytic activity for OER compared to the other synthesized catalysts at the same applied potential (1.6 V). On the other hand, the ZnGa1Al1O4 composition demonstrated excellent faradaic efficiency of ∼ 90% towards HER. From this work we can achieve multifunctional applications towards optoelectronics and electrocatalysis just by modulating Al/Ga ratio in ZnGa2-xAlxO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...