Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Mater ; 17(3)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385833

RESUMO

An ideal wound dressing material should enhance the wound healing process and must avoid bacterial contamination. In this study, the synergistic effect of graphene oxide (GO), silver (Ag) and magnesium (Mg) based silk electrospun nanofibrous film on wound healing was evaluated. It reports the influence of essential elements Mg and Ag during the skin regeneration process. Silver and magnesium nanoparticles were doped in graphene oxide. The goal of the present study was to fabricate an electrospun nanofibrous patch with nanoscale fillers to improve the wound recuperation manner and decrease the recuperation time to forestall microorganism infections and improve cellular behavior. Doping was done to insert Ag+and Mg2+ions in the crystal lattice of GO to overcome the disadvantage of aggregation of Ag and Mg nanoparticles. In this study, Mg2+and Ag+ions doped GO functionalized silk fibroin/PVA dressing material was prepared using the electrospinning technique. It was found that, Mg-GO@NSF/PVA and Ag/Mg-GO@NSF/PVA film possess good cytocompatibility, low hemolytic effect and effective antibacterial and anti-biofilm activities. Furthermore, their improved hydrophilicity and mid-range water vapor transmission rate allow them to be a suitable wound dressing material. Tensile strength of the composite silk film were enhanced relatively to silk/PVA film. The effect of prepared film on wound repair were investigated in excision rat model. It indicates, the wound covered with Ag/Mg-GO@NSF/PVA film showed the highest wound contraction rate and re-epithelization, allowing faster repair of wound sites. In conclusion, the development of metallic ions doped GO based silk fibroin/PVA is a promising approach towards development of antibiotic free wound dressing material. It prevents anti-biofilm formation and also provides adequate therapeutic effects for accelerating wound healing.


Assuntos
Fibroínas , Animais , Antibacterianos/química , Bandagens , Fibroínas/química , Grafite , Íons , Magnésio/farmacologia , Ratos , Seda/química , Prata , Cicatrização
3.
Micromachines (Basel) ; 13(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35208429

RESUMO

Fibroblast cell migration plays a crucial role in the wound-healing process. Hence, its quantitative investigation is important to understand the mechanism of the wound-healing process. The dynamic nature of the wound-healing process can be easily implemented using a microfluidic-based wound-healing assay. This work presented the use of a microfluidics device to simulate traumatic wounds on fibroblast cell monolayers by utilizing trypsin flow and PDMS barrier. In this study, a microfluidic chip with a transparent silk film is reported. The placement of film provides 3D cell culture conditions that mimic a 3D extracellular matrix (ECM) like environment and allows real-time monitoring of cells. A numerical study was conducted to evaluate the influence of dynamic medium-induced shear stress on the base and wall of the microchannel. This could facilitate the optimization of the inlet flow conditions of the media in the channel. At the same time, it could help in identifying stress spots in the channel. The scaffolds were placed in those spots for evaluating the influence of shear forces on the migratory behavior of fibroblast cells. The in vitro microfluidic assembly was then evaluated for cell migration under the influence of external shear forces during the wound-healing phenomena. A faster wound healing was obtained at the end of 24 h of the creation of the wound in the presence of optimal shear stress. On increasing the shear stress beyond a threshold limit, it dissociates fibroblast cells from the surface of the substrate, thereby decelerating the wound-healing process. The above phenomena were transformed in both coplanar microfluidics surfaces (by realizing in the multichannel interlinked model) and transitional microfluidics channels (by realizing in the sandwich model).

4.
Cell Tissue Bank ; 23(3): 417-440, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35000046

RESUMO

The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.


Assuntos
Bioimpressão , Osso e Ossos , Tinta , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
5.
Cell Tissue Bank ; 23(2): 199-212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021839

RESUMO

This review paper is primarily focused on bioprinting technology for biomedical applications. Bioprinting can be utilized for fabrication of wide range of tissue, based on which this chapter describes in detail its application in tissue regeneration. Further, the difficulties and potential in developing a construct for tissue regeneration are discussed herein. In this review paper, application of 3D bioprinting in tissue regeneration will be discussed in depth.


Assuntos
Bioimpressão , Impressão Tridimensional , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais
6.
J Biomed Mater Res B Appl Biomater ; 109(2): 279-293, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32865306

RESUMO

During past few decades, the demand for the replacement of damaged organs is increasing consistently. This is due to the advancement in tissue engineering, which opens the possibility of regeneration of damaged organs or tissues into functional parts with the help of 3D bioprinting. Bioprinting technology presents an excellent potential to develop complex structures with precise control over cell suspension and structure. A brief description of different types of 3D bioprinting techniques, including inkjet-based, laser-based, and extrusion-based bioprinting is presented here. Due to innate advantageous features like tunable biodegradability, biocompatibility, elasticity and mechanical robustness, silk has carved a niche in the realm of tissue engineering. In this review article, the focus is to highlight the possible approach of exploring silk as bioink for fabrication of bioprinted implants using 3D bioprinting. This review discusses different type of degumming, dissolution techniques for extraction of proteins from different sources of silk. Different recently reported 3D bioprinting techniques suitable for silk-based bioink are further elaborated. Postprinting characterization of resultant scaffolds are also describe here. However, there is an astounding progress in 3D bioprinting technology, still there is a need to develop further the current bioprinting technology to make it suitable for generation of heterogeneous tissue construct. The possibility of utilizing the adhesive property of sericin to consider it as bioink is elaborated.


Assuntos
Bioimpressão , Impressão Tridimensional , Seda/química , Engenharia Tecidual , Alicerces Teciduais/química
7.
Comput Methods Programs Biomed ; 185: 105148, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31678793

RESUMO

Scaffold-free tissue engineering can be considered as a rapidly developing technique in the field of tissue engineering. In the areas of regenerative medicine and wound healing, there is a demand of techniques where no scaffolds are used for the development of desired tissue. These techniques will overcome the problems of rejection and tissue failure which are common with scaffolds. Main breakthrough of scaffold free tissue engineering was after invention of 3-D printers which made it possible to print complex tissues which were not possible by conventional methods. Mathematical modeling is a prediction technique is used in tissue engineering for simulation of the model to be constructed. Coming to scaffold-free technique, mathematical modeling is necessary for the processing of the model that has to be bio-printed so as to avoid and changes in the final construct. Tissue construct is developed by use of non-destructive imaging techniques i.e. computed tomography (CT) and magnetic resonance imaging (MRI).In this review, we discussed about various mathematical models and the models which are widely used in bioprinting techniques such as Cellular Potts Model (CPM) and Cellular Particle Dynamic (CPD) model. Later, developed of 3-D tissue construct using micro CT scan images was explained. Finally, we discussed about scaffold free techniques such as 3-D bioprinting and cell sheet technology. In this manuscript, we proposed a cell sheet based bioprinting technique where mesenchymal stem cells (MSCs) on the surface of thermoresponsive polymer were subjected to mechanosensing either by introducing acoustic energies or stress created by polymeric strain energy function. Mechanosensing stimulus will trigger the intracellular signal transduction pathway leading to differentiation of the MSCs into desired cells.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Humanos , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Tomografia Computadorizada por Raios X
8.
Cogn Neurodyn ; 13(3): 219-237, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31168328

RESUMO

Stress-induced major depression and mood disorders are characterized by behavioural abnormalities and psychiatric illness, leading to disability and immature mortality worldwide. Neurobiological mechanisms of stress and mood disorders are discussed considering recent findings, and challenges to enhance pharmacological effects of antidepressant, and mood stabilizers. Pharmacological enhancement of ketamine and scopolamine regulates depression at the molecular level, increasing synaptic plasticity in prefrontal regions. Blood-derived neurotrophic factors facilitate mood-deficit symptoms. Epigenetic factors maintain stress-resilience in hippocampal region. Regulation of neurotrophic factors blockades stress, and enhances neuronal survival though it paralyzes limbic regions. Molecular agents and neurotrophic factors also control behavioral and synaptic plasticity in addiction and stress disorders. Future research on neuronal dynamics and cellular actions can be directed to obtain the etiology of synaptic dysregulation in mood disorder and stress. For the first time, the current review contributes to the literature of synaptic plasticity representing the role of epigenetic mechanisms and glucocorticoid receptors to predict depression and anxiety in clinical conditions.

9.
J Clin Apher ; 17(3): 133-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12378548

RESUMO

Release of unusually large von Willibrand factor (UL vWF) multimers and a deficiency of vWF metalloprotease may result in thrombotic thrombocytopenic purpura (TTP), a life threatening disease. Surgery has been associated with TTP, probably by releasing massive amounts of UL vWF. An association between TTP and orthopedic surgery has never been reported in the literature. We report a case of TTP following a total knee replacement surgery in which prior use of ticlopidine might have played a role.


Assuntos
Procedimentos Ortopédicos/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Púrpura Trombocitopênica Trombótica/etiologia , Fator de von Willebrand/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...