Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Top Curr Chem (Cham) ; 377(3): 13, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31054016

RESUMO

Graphene-based carbocatalysts owing to numerous amazing properties such as large specific surface area, high intrinsic mobility, excellent thermal and electrical conductivities, chemical stability, ease of functionalization, simple method of preparation, effortless recovery and recyclability have gained a superior position amongst the conventional homogeneous and heterogeneous catalysts. In this review, an endeavor has been made to highlight the syntheses of diverse heterocyclic compounds catalyzed by graphene-based catalysts. Further, the study also reveals that all the catalysts could be reused several times without significant loss in their catalytic activity. Additionally, most of the reactions catalyzed by graphene-based carbocatalysts were carried out at ambient temperature and under solvent-free conditions. Thus, the graphene-based catalysts do not merely act as efficient catalysts but also serve as sustainable, green catalysts. This review is divided into various sub-sections, each of which comprehensively describes the preparation of a particular heterocyclic scaffold catalyzed by graphene-derived carbocatalyst in addition to synthesis of graphene oxide and reduced graphene oxide, functionalization, and structural features governing their catalytic properties. Synthesis of heterocycles catalyzed by graphene-based carbocatalysts.


Assuntos
Técnicas de Química Sintética/métodos , Grafite/química , Compostos Heterocíclicos/síntese química , Catálise , Compostos Heterocíclicos/química
2.
Curr Org Synth ; 16(3): 435-443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31984906

RESUMO

AIM AND OBJECTIVE: Benzodiazepines and indole fused heterocycles are pharmacologically significant scaffolds. Trivial work on indole fused benzodiazepine compounds is reported in the literature. Hence, it is imperative to explore the synthesis of indole-fused benzodiazepines that may act as a template for biological studies in the future. Hence, in the present work, the synthesis of indole fused benzodiazepine derivatives was undertaken using multi-phase nano-titania as catalyst under microwave irradiation. MATERIALS AND METHODS: MAOS technique was used to carry out the synthesis of spiro-benzo [1,4]diazepine derivatives in the presence of multiphase nano-titania as a catalyst. Nano-titania was prepared by sol-gel method and characterized by XRD, FT-IR, FESEM, EDS and thermogravimetric techniques. The synthesized spiro-benzo [1,4] diazepine derivatives were identified by physical and spectral methods. RESULTS: Synthesized compounds were obtained in excellent yields in a short span of time. The synthesis was also carried out in the presence of conventional catalysts in addition to nano-titania. Among all the catalysts, the best result was obtained with nano-titania. The amount of nano-titania was optimized to be 0.05g giving 93- 95% yield of products. The study of reusability of nano-titania revealed that it could be reused up to four times with a negligible change in efficiency. CONCLUSION: The paper reports an efficient, cost-effective and environmentally benign approach for the synthesis of spiro-benzo [1,4] diazepine derivatives in the presence of multiphase nano-titania catalyst under microwave irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA